Irrigation Districts
Total Page:16
File Type:pdf, Size:1020Kb
What does it mean the Yellow River Problems? 2006/5/16-17 Beijing, China FUKUSHIMA, Yoshihiro Research Institute for Humanity and Nature NSFC-JST Bilateral Workshop on Environmental Impact Assessments and Promotion Technologies for Watershed and Ecosystems Sustainability / Yellow River basin/Dr.Xeiyao Ma 2 AreaArea::752,443752,443 km km2 LengthLength::5,4645,464 km km † Precip.Precip.†::452452 mm mm ( (overover Huay. Huay.)) ‡ 8 3 Dis.Dis.‡::581.6581.6 10 108mm3 ((LijinLijin)) Toudaoguai †Wang†Wang et et al., al., 2001 2001 ‡Zhang‡Zhang et et al., al., 2001 2001 Longmen Huayuankou Langzhou Sanmenxia Gauge-based precipitation data set over East Asia during 26 years from 1978 to 2003 at the resolution of 0.5 degree (Xie etc., J.Hydrometeor.) ToudaoguaiToudaoguai LijinLijin HuayuankouHuayuankou TangnaihaiTangnaihai LanzhouLanzhou SanmenxiaSanmenxia (Unit:mm) Estimated from 117 meteorological station data From 0.1°dataset made by Xie etc. (Annual precipitation is calculated from Jan. to Dec.) North China Plain Annual Summer Winter (Unit:mm) 臨河 靖遠 延安 瑪多 鄭州 Annual mean Air temperature(1960-2001) Discharge at Huayuankou and Lijin 1950-1980 1981-2000 H uayuanko4.51x1010m 3 3.29x1010m 3 Lijin 4.21x1010m 3 2.06x1010m 3 1200 Lijin (1950-2002) 1000 Huayuankou(1950- 800 2002) 600 400 Discharge (10^8 m^3) (10^8 Discharge 200 0 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 Year Water use change in the lower reach (1951-2000) 200 1989 180 1988 ) 160 3 1981 10 3 m 8 140 1.38x10 m 1999 120 100 80 60 Estimated water use (10 use water Estimated 40 20 0 1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 Year 600 60 500 50 water diverted 400 40 ) 3 m annual average discharge 8 300 30 at Huayuankou (10 200 20 Ratio in % ratio in % Water diverted/Discharge Water 100 10 0 0 1950s 1960s 1970s 1980s 1990s Decade Drying up in the lower reach due mainly to low discharge at Huayuankou and relatively high rate of diversion (1) Observations of groundwater in the coastal zones Continuous measurements of SGD Evaluation of freshwater-seawater by automated seepage meters interface by resisitivity measurements with tomography O bservation Office ra c k Control Equipment Measurements of seabed temperature FTR O p t ic a l S p lic e B o x by Fiber Thermo Radars A pproach Optical Fiber Cable O p t ic a l S p lic e B o x U n s a tu ra te d W a te r T a b le S u rfa c e Sensor Optical Fiber Cable sea water U nconfined MIXING aquifer ZO NE R ecirculated seepage ground water salty wayer seaw ater spring Im p e rm e a b le S tra ta discharge A rtesian Aquifer(confined) Im p e rm e a b le S tra ta FTR :Fiber Optic Tem perature Laser Radar System Configuration (2) Observations of the Yellow River water and Estuary Mouth of Yellow River(EC:39.8 mS/cm, pH:8.2) Ra Isotope Use for evaluating “Mixing processes” and “water age” A bridge (Kurumawatari) EC: 0.891 mS/cm, pH:8.8 GroundwaterGroundwater RunoffRunoff inin thethe deltadelta areaarea Component of groundwater: 5% of the total runoff in normal year 3Mt/day=1bilion t/year (2004) Surface water vs Groundwater (nutrients) surface vs groundwater V Flow 100 5 V Si conc. 100 1190 discharge 100 60 V TP conc. 100 1000 discharge 100 50 V DTN conc. 100 50 discharge 100 2.4 Si and P flowed into Bo-hai Sea as groundwater are important, but N seems not effective in groundwater. Seasonal change of SST in Bo-hai Sea, 2002 The early Estuary of spread of early Japan Sea phase was detected by NOAA in the Bo-Hai Strait early Bo-Hai Sea It means that the horizontal heat transfer which includes fluctuation and amplitude is distinguished in Bo-Hai Sea. Therefore, the fluctuation of river flow from is to affect SST in the Bo-Hai Sea. Comparison of Bo-Hai Sea environment in both 1982 and 1992 Conclusion Decreased water exchange By the previous marine investigations in both 1982-1983 (high inflow) and 1992-1993 (low inflow) in the Bo-Hai Sea, It has been clarified that nitrogen is up and phosphorus and silica are down due to the decrease of river flow from the Yellow River, and that saline in the surface is up, but saline in the depth is down. It means the decrease of sea water exchange between Bo-Hai Sea and The Yellow Sea. Case Studies in Large Irrigation Districts Quintongxia Irrigation District Hetao Irrigation District 330,000 ha 570,000 ha Weishan Irrigation District 310,000 ha From 「黄河流域大型灌区節水改造戦略研究」、2002 烏梁素海(Ulansuhai, InnerMonglia) Expansion of the irrigated area in the Yellow River Basin x1000 ha 2500 Diversion for irrigation Upper 3 2000 Middle 1949 7.9 Billon m Lower 3 1959 18.7 Billion m 1500 3 1969 18.9 Billion m 1000 3 1979 27.8 Billion m 3 500 1993 30.7 Billion m 3 1997 30.8 Billion m 0 1950s 1960s 1970s 1980s 1990s 1997 7.53 Million ha Irrigated Area 69% : in YRB 60% : of large Ir. Districts Li Huian (2003) Land classification of 2000 by MODIS (Matsuoka etc.) 1.0 1.2 Forest Hydrological model structure 1.0 0.8 Grass land 0.8 0.6 β 0.6 E/Ep 0.4 0.4 Organic soil 0.2 0.2 Sand soil 0.0 0.0 0 1 2 3 4 5 6 7 0 0.1 0.2 0.3 0.4 0.5 Surface temp. LAI Volumetric Water Content θ Ea=f(LAI)・β(θ)・Ep Ea: actual Evap., θ:soil moisture, Ep:potential Evap. E Forest 0.78 【Land type】 = 1:bare (LAI=0) Ep 1+ exp[−0.78(LAI − 2.2)] Potential Evap. 2:grass& crop (LAI=1) E Grassland 3:Forest (LAI=5) = 0.25 + 0.4[1− exp(−1.5LAI)] 4:irrigated area (LAI=1)Ep SVAT model 5:water surface ChU[F1(θsat −θ )F 2 ] (Soil-Vegetation- β (θ ) = (1+ ) Atmospheric-Transfer) 【irrigated period (DOY)】 Datm Daily meteorological data Scheme ~Lanzhou:150-270 Daily meteorological data F1 F2 θsat ~Taudaoquai:120-270 Organic 2.16E+2 10.0 0.49 HYCYMODEL ~Huayuankou:90-300 Sand 8.32E+5 16.6 0.39 [Human[Human activities] activities] DamDam control control Output IrrigationIrrigation intake intake HYCYMODEL /parameters on irrigation and evaporation P 2.2. 3.3. Ea S=KQP 【upstream 1】 【upstream 2-middle stream】 Direct Qlimit=0.01[mm/h] Qlimit=0.003[mm/h] S3 D50=20[mm] D50=100[mm] flow D16=10[mm] D16=20[mm] S4 Base Irrigation:150-270 Irrigation:120-270 [upstream 2] flow [DOY] Irrigation:90-300 [middle stream] 1.1. 4.4. 【irrigated】 Ep: Potential Evaporation 【common】 Discharge from Irrigation area = P – Ep (During Irrigation Period) P3=1.0 Discharge from Irrigation area = P – E2 (Non Irrigation Period) P4=0.1 (The negative discharge is correspond to the water intake from river channel.) K3=21.7 K4=687 【non-irrigated】 β θ S3ini=0 Bare :Ea1=f(LAI)* ( )*Ep Grass :Ea2=f(LAI)*β(θ)*Ep S4ini=K4*QlimitP Forest :Ea3=f(LAI)*β(θ)*Ep Θ max=0.49 Water :Ea5=Ep (Smax=D50+D16*3)* *Restraint for evaporation. No restraint in the case of S3+S4>Smax Annual Seasonal change change 8 3 ×10 m 8 3 1000 -200 ×10 m 200 400 600 800 100 150 200 50 0 0 1960 1960 1962 1962 Source Area(Tangnaihai) 1964 1964 1966 1966 1968 1968 1970 1970 1972 1972 1974 1974 1976 1976 1978 1978 1980 1980 1982 1982 1984 1984 1986 1986 1988 1988 1990 1990 1992 1992 Red Blue Red Blue RMSE=4.54 1994 1994 : : : Calculated : Observed Calculated 1996 Observed 1996 1998 1998 2000 2000 Annual Seasonal change change 8 3 ×10 m 8 3 -200 1000 ×10 m 100 150 200 200 400 600 800 50 0 0 1960 1960 1962 1962 Upper Reach-1(Lanzhou) 1964 1964 1966 1966 1968 1968 1970 Influences oftheLargeDams 1970 1972 1987-Longyangxia Dam 1972 1969-Liujiaxia Dam 1974 1974 1976 1976 1978 1978 1980 1980 1982 1982 1984 1984 1986 1986 1988 1988 1990 1990 1992 1992 Red Blue Red Blue RMSE=8.01 1994 1994 : : : Calculated : Observed Calculated Observed 1996 1996 1998 1998 2000 2000 Reservoir operation by the large dams 1969~1986 1987~2000 ~ 1968 Liujiaxia Liujiaxia+Longyangxia Seasonal change 100 100 100 patterns 80 80 80 3 m 60 60 60 of the observed 8 10 40 40 40 discharge at × Lanzhou 20 20 20 0 0 0 123456789101112 123456789101112 123456789101112 200 150 3 Blue:Observed m 8 Red:Calculated Original 100 10 model × 50 0 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 200 Blue:Observed 150 3 Red:Calculated New m 8 100 10 model × 50 0 2000 1998 1996 1994 1992 1990 1988 1986 1984 1982 1980 1978 1976 1974 1972 1970 1968 1966 1964 1962 1960 balance Annual Seasonal change Water change 8 3 8 3 ×10 m ×108m3 ×10 m -200 1000 100 150 200 -50 200 400 600 800 50 0 -200 200 400 600 800 0 0 1960 1960 1960 1962 1964 1962 Upper Reach-2(Toudaoguai) 1966 1962 1968 1970 1964 1972 1964 1974 1976 1966 1978 1966 1980 1982 1968 1984 1968 1986 1988 1970 1990 1970 1992 1994 1972 1996 1972 1998 2000 1974 E 1974 Q P 1976 cal 1976 1978 1978 -200 200 400 600 800 0 1980 1980 1960 1963 1982 1982 1966 1969 1984 1972 1984 1975 1986 1978 1986 1981 1988 1984 1988 1987 1990 1990 1990 Red 1993 1992 Blue Red Blue 1996 1992 RMSE=7.48 1999 : 1994 : : Calculated : Observed Q Q Q 1994 Calculated Observed Toudaoguai 1996 Lanzhou diff 1996 1998 = 1998 Q 2000 T 2000 - Q L Water Balance of the two large irrigation areas between Lanzhou and Toudaoguai RS ST Remote Sensing Statistical data Land-use data Area Water Area Drainag (RS) ×104h % of ×104h Intake Water loss Water loss loss (ST) e ×104h a Total a ×108m3 ×108m3 ×108m3 ×108m3(*) ×104ha ×108m3 a Qingtonxi 60.6 33.0 62.0 35.3 26.7 a 60.5 100.7 62.8* 90.6 71.4 % Hetao 40.1 57.6 50.0 5.3 44.7 39.5 Other 65.8 - 41.1* - - - - - % Total (Lanzhou- 100 166.5 - 103.9* - - - - - Toudaogu % ai) *Estimated by the observed values(1990s) Modeling the Irrigation water intake patterns 1969~1986 1987~2000 ~ 1968 Liujiaxia Liujiaxia+Longyangxia 100 100 100 Observed discharge 80 80 80 3 60 60 60 patterns m 8 at Lanzhou 10 40 40 40 × 20 20 20 0 0 0 123456789101112 1 2 3 4