Evolutionary Studies of the Gnetales

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Studies of the Gnetales Evolutionary studies of the Gnetales Chen Hou Academic dissertation for the degree of Doctor of Philosophy in Plant Sys- tematics presented at Stockholm University 2016 Evolutionary studies of the Gnetales Chen Hou ©Chen Hou Stockholm University 2016 ISBN 978-91-7649-371-7 Printed in Sweden by US AB, Stockholm 2016 Distributor: Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden ”Although relatively few people have chosen to study the Gnetales, those who have had the opportunity to work with these organisms experience a profound sense of extraordinary beauty and complexity of the evolutionary process.” - Willian E. Friedman, 1996 Abstract The Gnetales consist of three distinct genera, Ephedra, Gnetum and Wel- witschia with considerable divergence among them regarding morphologi- cal, ecological and molecular characters. A longstanding debate of the simi- larity between the Gnetales and angiosperms and the unresolved seed plant phylogeny intrigues plant scientists to further investigate the evolutionary history of the Gnetales. The presented projects deal with interdisciplinary questions on proteomics, chloroplast genomes, phylogenetic relationships, gross morphology and taxonomy. The thesis aims to summarize general problems encountered in previous studies, and to provide new insights and future perspectives based on the results of completed and ongoing projects. In Ephedra, the Mediterranean species E. foeminea has been shown to be entomophilous and it possesses an important phylogenetic status as the sister of the remaining genus. Therefore, the chloroplast genome of E. foeminea was assembled and compared to that previously presented (of the anemophi- lous Asian species E. equisetina, nested in the core clade of Ephedra). The genome has a quadripartite structure and comprises 118 genes and 109,584 base pairs. A pairwise genome comparison was conducted between E. foe- minea and E. equisetina, resulting in the detection of 2,352 variable sites, the obtained data can be used for prospective phylogenetic studies. A proteomic study was also conducted on E. foeminea along with three anemophilous Ephedra species, in order to investigate the biochemistry of the pollination drops. The results show that detected proteins in the pollination drops of Ephedra vary dramatically among species but always occur in very low amounts. The majority of the detected proteins are degradome proteins, i.e., waste products from degrading cells of the nucellus. Some secretome pro- teins were also found, which are putatively functional, but also these proteins occur in very low amounts. The repeatability of the proteomic studies can, however, be questioned. The sampling methods and proteomic analyses are probably problematic although some suggestions for improvement are pro- vided. Thus I chose to continue with other projects. In Gnetum, reconstruction of the genus phylogeny and assessments of diver- gence times of clades were performed using an extensive sampling of in- group and outgroup accessions. The results show that the South American lineage separated from the remaining genus in the Late Cretaceous. The con- tinued diversification event gave rise to an African lineage and an Asian lineage. The crown age of the Asian clade, which comprises two arborescent species sister to the remaining liaonid species, was estimated to the Creta- ceous-Paleogene (K-Pg) boundary. In light of the genus phylogeny and esti- mated node ages, we suggest that the breakup of Gondwana influenced di- versification patterns in Gnetum. Later dispersal events also contributed to the current distribution of Gnetum, and to the phylogenetic patterns within each of the major clades. From my results, it is however clear that taxonomy and species delimitations are poorly defined, and needs to be further studied for all subclades of Gnetum. I have initiated this task by studying the Chi- nese lianoid clade of Gnetum more in depth. Eleven chloroplast genomes were generated, aligned and compared. Based on the information, four chlo- roplast markers were designed and applied to further resolve the species relationships with an extensive sampling. The results show, with strong sup- port, that G. parvifolium is sister to all the remaining species of the Chinese linaoid clade. Another five lianoid species are confirmed using both morpho- logical and molecular data, but several names are represented by type mate- rial that cannot be considered separate species. Modified keys for identifica- tion of male and female plants are presented, based on vegetative and repro- ductive structures. A subsequent dating analysis indicates that diversification in the Chinese lianoid Gnetum clade took place mainly in the Neogene, dur- ing which environmental changes probably facilitated diversification in the lineage. List of Papers This thesis is based on the following five papers, referred to in the text by their respective roman numerals. Paper I. Hou, C. & Rydin, C. 2013. Proteome of pollination drops in Ephed- ra (Gnetales). Manuscript. Paper II. von Aderkas, P.; Prior, N.; Gagnon, S.; Little, S.; Cross, T.; Hardie, D.; Borchers, C.; Thornburg, R.; Hou, C. & Lunny. A. 2015. Degradome and secretome of pollination drops of Ephedra. The Botanical Review 81:1- 27. DOI:10.1007/s12229-014-9147-x Paper III. Hou, C.; Wikström N. & Rydin, C. 2015. The chloroplast genome of Ephedra foeminea (Ephedraceae, Gnetales), an entomophilous gymno- sperm endemic to the Mediterranean area. Mitochondrial DNA. DOI:10.3109/19401736.2015.1122768 Paper IV. Hou, C.; Humphreys, A. M.; Thureborn, O. & Rydin. C. 2015. New insights into the evolutionary history of Gnetum (Gnetales). Taxon 64:239-253. DOI:10.12705/642.12 Paper V. Hou, C.; Wikström N.; Strijk J. S. & Rydin, C. 2016. Resolving phylogenetic relations and species delimitations in closely related gymno- sperms using high-throughput NGS, Sanger sequencing and morphology. submitted Reprints were made with permission from the publishers. Contributions of the thesis Papers I, III, IV, V were written by CH with comments and suggestions from the co-authors, and the designs of the studies were performed by CH and CR. CH did analyses of gel electrophoresis in Paper I and Paper II. CH has gen- erated the majority of sequences in Paper IV together with OT, all sequences in paper V, and the sequences in Paper III together with NW. CH is respon- sible for the phylogenetic analyses and dating analyses in Paper IV and Pa- per V, genome assemblies individually in Paper IV and together with NW in Paper III. CH has conducted the morphological studies in Paper V in cooper- ation with the co-authors. Content Introduction …………………………………………………………………...…………………………..10 Chapter 1. Pollination biology in the Gnetales 1.1 Anemophily versus entomophily ………………………………………………..……………………12 1.2 Investigations of pollination drops in gymnosperms……………………………………...…………..12 1.3 A proteomic study of pollination drops of Ephedra…………………………………….………….…13 1.4 A new proteomic study……………………………………………………………...…………...........14 1.5 Prospective studies………………………………………………………………………….…………15 Chapter 2. Phylogenetic studies and dating analyses of the Gnetales 2.1 Phylogenetic studies in Ephedra and taxonomic implications……………………………..…………17 2.2 Dating analyses and evolutionary history of the Ephedraceae………………………………..………17 2.3 Phylogenetic studies in Gnetum and taxonomic implications………………………………...………18 2.4 Dating analyses and evolutionary history of Gnetum…………………………………………………20 2.5 Prospective studies…………………………….………………………………………………………22 Chapter 3. Chloroplast genome investigations in the Gnetales 3.1 Nuclear genomes of the Gnetales………………………………………………………………..……24 3.2 Structural differences among chloroplast genome in the Gnetales……………………………………25 3.3 A newly generated chloroplast genome of Ephedra………………………………………..…………25 3.4 Chloroplast genome investigation in Chinese lianoid Gnetum………………………………..………26 3.5 Prospective studies…………………………………………………………………………………….27 Chapter 4. Taxonomy and species delimitations in the Gnetales…………………………………...…….29 Concluding remarks……………………………………………………………………………………….30 Legend………..……………………………………………………………………………………………31 Svensk sammanfattning (Swedish summary)……………………………………………………..………32 Acknowledgement……………….…………………………………………………………………..……34 Literature cited…………………………………………………………………………………….………36 Abbreviations 1D SDS PAGE One dimensional SDS polyacrylamide gel electrophoresis AICc Corrected Akaike information criterion AICM A posterior simulation-based analogue of Akaike information criterion CIPRES Cyber-infrastructure for Phylogenetic Research CTAB Cetyl trimethylammonium bromide DDT Dichlorodiphenyltrichloroethane DNA Deoxyribonucleic acid GTR + Γ The general time reversible model with gamma distributed rates HPD Highest posterior density IRs Inverted repeats K-Pg Cretaceous-Paleogene LC-MS Liquid chromatography-mass spectrometry LR Likelihood ratio LSC Large single copy MCMC Markov Monte Carlo chains NGS Next generation sequencing nrITS Nuclear internal transcribed spacers (including ITS1, 5.8S and ITS2) PP Posterior probability RJ-MCMC Reversible-jump Markov chain Monte Carlo RNA Ribonucleic acid rRNA Ribosomal RNA SSC Small single copy TBR Tree-bisection reconnection tRNA Transfer RNA UCLN Uncorrelated lognormal relaxed clock WCSP World Checklist of Selected Plant Families Hou, C. PhD thesis 2016 Introduction The order Gnetales consists of three families, Ephedraceae, Gnetaceae and Welwitschiaceae. Each family is monogeneric and comprises Ephedra (Fig. 1a), Welwitschia
Recommended publications
  • Palaeo Leaf Economics Reveal a Shift in Ecosystem Function Associated with the End-Triassic Mass Extinction Event
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318473239 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event Article in Nature Plants · July 2017 DOI: 10.1038/nplants.2017.104 CITATIONS READS 7 428 7 authors, including: Wuu Kuang Soh Karen Bacon University College Dublin University of Leeds 14 PUBLICATIONS 79 CITATIONS 15 PUBLICATIONS 167 CITATIONS SEE PROFILE SEE PROFILE Margret Steinthorsdottir Andrew C Parnell Swedish Museum of Natural History Maynooth University 30 PUBLICATIONS 408 CITATIONS 103 PUBLICATIONS 5,129 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mid-Cretaceous south polar forests View project Response of pan-Arctic permafrost peatlands to rapid climate warming View project All content following this page was uploaded by Wuu Kuang Soh on 24 March 2019. The user has requested enhancement of the downloaded file. ARTICLES PUBLISHED: XX XX 2017 | VOLUME: 3 | ARTICLE NUMBER: 17104 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event W. K. Soh1*,I.J.Wright2,K.L.Bacon3, T. I. Lenz2, M. Steinthorsdottir4,5,A.C.Parnell6 and J. C. McElwain1 Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO2-induced global warming event on the ecological functioning of dominant plant communities.
    [Show full text]
  • Long-Term Growth Patterns of Welwitschia Mirabilis, a Long-Lived Plant of the Namib Desert (Including a Bibliography)
    Plant Ecology 150: 7–26, 2000. 7 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography) Joh R. Henschel & Mary K. Seely Desert Ecological Research Unit, Desert Research Foundation of Namibia, Gobabeb Training and Research Centre, P.O. Box 953, Walvis Bay, Namibia (E-mail: [email protected]) Key words: Episodic events, Long-term ecological research, Namibia, Population dynamics, Seasonality, Sex ratio Abstract Over the past 14 years, long-term ecological research (LTER) was conducted on the desert perennial, Welwitschia mirabilis (Gnetales: Welwitschiaceae), located in the Welwitschia Wash near Gobabeb in the Central Namib Desert. We measured leaf growth of 21 plants on a monthly basis and compared this with climatic data. The population structure as well as its spatial distribution was determined for 110 individuals. Growth rate was 0.37 mm day−1, but varied 22-fold within individuals, fluctuating seasonally and varying between years. Seasonal patterns were correlated with air humidity, while annual differences were affected by rainfall. During three years, growth rate quadrupled following episodic rainfall events >11 mm during mid-summer. One natural recruitment event followed a 13-mm rainfall at the end of summer. Fog did not appear to influence growth patterns and germination. Plant loca- tion affected growth rate; plants growing on the low banks, or ledges, of the main drainage channel grew at a higher rate, responded better and longer to rainfall and had relatively larger leaves than plants in the main channel or its tributaries.
    [Show full text]
  • The Gnetales: Past and Present
    Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 The Gnetales: past and present Catarina Rydin & Carina Hoorn To cite this article: Catarina Rydin & Carina Hoorn (2016) The Gnetales: past and present, Grana, 55:1, 1-4, DOI: 10.1080/00173134.2015.1118530 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1118530 Published online: 25 Jan 2016. Submit your article to this journal Article views: 185 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [Stockholm University Library] Date: 18 May 2017, At: 03:42 Grana, 2016 Vol. 55, No. 1, 1–4, http://dx.doi.org/10.1080/00173134.2015.1118530 The Gnetales: past and present CATARINA RYDIN 1 & CARINA HOORN2 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden, 2Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands Abstract The present issue of GRANA is devoted to pollen morphology and diversity of the Gnetales in time and space. Three papers address fossil pollen and two papers concern pollen of the extant genus Ephedra. Together, the papers of the issue contribute new information relevant for the understanding of the fossil and evolutionary history of the Gnetales, pollination biology in the group and implications for ephedroid pollen as indicators of palaeoclimate. Keywords: Ephedra, Ephedripites, Gnetaceaepollenites, palaeoclimate, pollen, pollination Scientific progress is motivated by knowledge gaps; or et al. 2013, 2014), albeit almost exclusively from a as the physicist Paul Dirac put it: ‘In science one tries relatively short time period in the mid Early Cretac- to tell people, in such a way as to be understood by eous.
    [Show full text]
  • A Global Analysis of the Distribution and Conservation Status Of
    Journal of Biogeography (J. Biogeogr.) (2015) 42, 809–820 SYNTHESIS Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms Yann Fragniere1,Sebastien Betrisey2,3,Leonard Cardinaux1, Markus Stoffel4,5 and Gregor Kozlowski1,2* 1Natural History Museum Fribourg, CH-1700 ABSTRACT Fribourg, Switzerland, 2Department of Biology Aim Gymnosperms are often described as a marginal and threatened group, and Botanic Garden, University of Fribourg, members of which tend to be out-competed by angiosperms and which therefore CH-1700 Fribourg, Switzerland, 3Conservation Biogeography, Department of preferentially persist at higher latitudes and elevations. The aim of our synthesis Geosciences, University of Fribourg, CH-1700 was to test these statements by investigating the global latitudinal and elevational Fribourg, Switzerland, 4Dendrolab.ch, distribution of gymnosperms, as well as their conservation status, using all extant Institute of Geological Sciences, University of gymnosperm groups (cycads, gnetophytes, ginkgophytes and conifers). 5 Bern, CH-3012 Bern, Switzerland, Institute Location Worldwide. for Environmental Sciences, Climatic Change and Climate Impacts, University of Geneva, Methods We developed a database of 1014 species of gymnosperms containing CH-1227 Carouge, Switzerland latitudinal and elevational distribution data, as well as their global conservation status, as described in the literature. The 1014 species comprised 305 cycads, 101 gnetophytes, the only living representative of ginkgophytes, and 607 conifers. Generalized additive models, frequency histograms, kernel density estimations and distribution maps based on Takhtajan’s floristic regions were used. Results Although the diversity of gymnosperms decreases at equatorial lati- tudes, approximately 50% of the extant species occur primarily between the tropics. More than 43% of gymnosperms can occur at very low elevations (≤ 200 m a.s.l.).
    [Show full text]
  • Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A
    www.nature.com/scientificreports OPEN Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A. Brummitt3, Steve P. Bachman 1,2, Stef Ickert-Bond 4, Peter M. Hollingsworth5, Aaron Liston6, Damon P. Little7, Sarah Mathews8,9, Hardeep Rai10, Catarina Rydin11, Dennis W. Stevenson7, Philip Thomas5 & Sven Buerki3,12 Driven by limited resources and a sense of urgency, the prioritization of species for conservation has Received: 12 May 2017 been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species Accepted: 28 March 2018 at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). Published: xx xx xxxx This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The efect of diferent extinction probability transformations and the handling of IUCN data defcient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g.
    [Show full text]
  • Multipurpose Trees for Agroforestry in the Pacific Islands
    For Educators, Gardeners, Farmers, Foresters, and Landscapers Agroforestry Guides for Pacific Islands “Well-researched, concise, user-friendly...an invaluable practical resource for those working to conserve and expand the use of trees in agricultural systems.” —APANews, The Asia-Pacific Agroforestry Newsletter FAO Regional Office, Bangkok, Thailand “A significant contribution to public education, advancing the cause of integrated agriculture and forestry...a resource of lasting value.” —The Permaculture Activist, North Carolina “A most excellent handbook...a wonderful resource.” —Developing Countries Farm Radio Network, Toronto, Canada “Eloquently makes a case for reintroducing and emphasizing trees in our island agriculture.” —Dr. Bill Raynor, Program Director, The Nature Conservancy, Pohnpei, Federated States of Micronesia “Provides a real clearinghouse on traditional and modern agroforestry not only for Pacific Islands, also very useful for other regions.” —ILEIA Newsletter for Low External Input and Sustainable Agriculture, The Netherlands Purchase the book at http://www.agroforestry.net/afg/ Agroforestry Guides for Pacific Islands edited by Craig R. Elevitch and Kim M. Wilkinson Price: $24.95 (plus shipping) Availability: Usually ships within one business day. Paperback - 240 pages, illustrated and fully indexed Release date: September, 2000 ISBN: 0970254407 Publisher: Permanent Agriculture Resources, P.O. Box 428, Holualoa, HI, 96725, USA. Tel: 808-324-4427, Fax: 808-324-4129, email: [email protected] Agroforestry Guides for Pacific Islands #2 Multipurpose Trees for Agroforestry in the Pacific Islands by Randolph R. Thaman, Craig R. Elevitch, and Kim M. Wilkinson www.agroforestry.net Multipurpose Trees for Agroforestry in the Pacific Islands Abstract: The protection and planting of trees in agroforestry systems can serve as an important, locally achievable, and cost-effective step in sustainable development in the Pacific Islands.
    [Show full text]
  • Evolution Along the Crassulacean Acid Metabolism Continuum
    Review CSIRO PUBLISHING www.publish.csiro.au/journals/fpb Functional Plant Biology, 2010, 37, 995–1010 Evolution along the crassulacean acid metabolism continuum Katia SilveraA, Kurt M. Neubig B, W. Mark Whitten B, Norris H. Williams B, Klaus Winter C and John C. Cushman A,D ADepartment of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV 89557-0200, USA. BFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA. CSmithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama. DCorresponding author. Email: [email protected] This paper is part of an ongoing series: ‘The Evolution of Plant Functions’. Abstract. Crassulacean acid metabolism (CAM) is a specialised mode of photosynthesis that improves atmospheric CO2 assimilation in water-limited terrestrial and epiphytic habitats and in CO2-limited aquatic environments. In contrast with C3 and C4 plants, CAM plants take up CO2 from the atmosphere partially or predominantly at night. CAM is taxonomically widespread among vascular plants andis present inmanysucculent species that occupy semiarid regions, as well as intropical epiphytes and in some aquatic macrophytes. This water-conserving photosynthetic pathway has evolved multiple times and is found in close to 6% of vascular plant species from at least 35 families. Although many aspects of CAM molecular biology, biochemistry and ecophysiology are well understood, relatively little is known about the evolutionary origins of CAM. This review focuses on five main topics: (1) the permutations and plasticity of CAM, (2) the requirements for CAM evolution, (3) the drivers of CAM evolution, (4) the prevalence and taxonomic distribution of CAM among vascular plants with emphasis on the Orchidaceae and (5) the molecular underpinnings of CAM evolution including circadian clock regulation of gene expression.
    [Show full text]
  • Wild Food Plants of Remote Oceania
    Acta Societatis Botanicorum Poloniae Journal homepage: pbsociety.org.pl/journals/index.php/asbp INVITED REVIEW Received: 2012.09.01 Accepted: 2012.10.12 Published electronically: 2012.11.22 Acta Soc Bot Pol 81(4):371–380 DOI: 10.5586/asbp.2012.034 Wild food plants of Remote Oceania Will C. McClatchey* Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, Texas 76107, USA Department of Botany, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA Environmental Studies Program, Texas Christian University, Fort Worth, Texas 76107, USA Abstract Agricultural societies partly depend upon wild foods. Relationships between an agricultural society and its wild foods can be explored by examining how the society responds through colonization of new lands that have not been previously inhabited. The oldest clear example of this phenomenon took place about 5000 years ago in the tropical Western Pacific at the “boundary” interface between Near and Remote Oceania. An inventory of wild and domesticated food plants used by people living along “the remote side of” that interface has been prepared from the literature. This was then assessed for the roles of plants at the time of original colonization of Remote Oceania. The majority of species are wild foods, and most of these are used as leafy vegetables and fruits. The wild food plants mostly serve as supplements to domesticated species, although there are a few that can be used as substitutes for traditional staples. Keywords: Oceania, wild food plants, colonization, agriculture Introduction implication is that humans brought wild plant materials to their homes or processing sites, much as squirrels or fruit bats Human-plant co-evolutionary relationships have been might do, and then consumed less than all of the material col- documented for processes of wild plant food domestication lected, discarding material (seeds or other living parts) that into socially critical crops [1,2].
    [Show full text]
  • 1 Relationships of Angiosperms To
    Relationships of Angiosperms to 1 Other Seed Plants Seed plants are of fundamental importance both evolution- all gymnosperms (living and extinct) together are not arily and ecologically. They dominate terrestrial landscapes, monophyletic. Importantly, several fossil lineages, Cayto- and the seed has played a central role in agriculture and hu- niales, Bennettitales, Pentoxylales, and Glossopteridales man history. There are fi ve extant lineages of seed plants: (glossopterids), have been proposed as putative close rela- angiosperms, cycads, conifers, gnetophytes, and Ginkgo. tives of the angiosperms based on phylogenetic analyses These fi ve groups have usually been treated as distinct (e.g., Crane 1985; Rothwell and Serbet 1994; reviewed in phyla — Magnoliophyta (or Anthophyta), Cycadophyta, Doyle 2006, 2008, 2012; Friis et al. 2011). These fossil lin- Co ni fe ro phyta, Gnetophyta, and Ginkgophyta, respec- eages, sometimes referred to as the para-angiophytes, will tively. Cantino et al. (2007) used the following “rank- free” therefore be covered in more detail later in this chapter. An- names (see Chapter 12): Angiospermae, Cycadophyta, other fossil lineage, the corystosperms, has been proposed Coniferae, Gnetophyta, and Ginkgo. Of these, the angio- as a possible angiosperm ancestor as part of the “mostly sperms are by far the most diverse, with ~14,000 genera male hypothesis” (Frohlich and Parker 2000), but as re- and perhaps as many as 350,000 (The Plant List 2010) to viewed here, corystosperms usually do not appear as close 400,000 (Govaerts 2001) species. The conifers, with ap- angiosperm relatives in phylogenetic trees. proximately 70 genera and nearly 600 species, are the sec- The seed plants represent an ancient radiation, with ond largest group of living seed plants.
    [Show full text]
  • Master of Science in Botany
    St. Albert’s College (Autonomous) M.Sc. Botany Syllabus 2019 Master of Science in Botany PROGRAMME STRUCTURE AND SYLLABUS 2019-20 ADMISSIONS ONWARDS BOARD OF STUDIES IN BOTANY (PG) ST.ALBERT’S COLLEGE (AUTONOMOUS), ERNAKULAM (AFFILIATED TO MAHATMA GANDHI UNIVERSITY, KOTTAYAM) (2019) Department of Botany Page 1 St. Albert’s College (Autonomous) M.Sc. Botany Syllabus 2019 SYLLABUS FOR POST-GRADUATE PROGRAME IN BOTANY (Biotechnology as Program Elective Subject) THE RESTRUCTURED CURRICULUM IN CREDIT SEMESTER SYSTEM (EFFECTIVE FROM 2019 ADMISSIONS) Department of Botany Page 2 St. Albert’s College (Autonomous) M.Sc. Botany Syllabus 2019 DEPARTMENT OF BOTANY, ST.ALBERT’S COLLEGE, ERNAKULAM Board of Studies in Botany (PG) Sl.No: Name Designation Qualification 1/1 Dr .J. Jameson, (Chairman) (HOD) Associate Professor Ph. D a) Entire faculty of each specialization 2. Dr. L. Jose Associate Professor, SACA Ph.D 3. Dr. Siju M. Varghese Assistant Professor, SACA Ph.D 4. Dr. K. Madhusudhanan Assistant Professor, SACA M. Phil., Ph.D. 5. Smt. Drishya K Reghuvaran Assistant Professor, SACA M.Sc 6. Smt. Mary Joseph Assistant Professor, SACA M.Sc 7. Dr. Anna Ancy Antony A Assistant Professor,SACA Ph.D 8. Dr. Anisha S Assistant Professor, SACA Ph.D b) Experts in the Subject: (two) Assistant Professor, Dept of Botany,Kerala 1. Dr Cyril E A Ph.D University. Associate Professor, Dept of Botany, Calicut 2. Dr. Jose Puthoor Ph.D University. c) Nominee of Vice Chancellor (one) Dr. Jomy Augustine HOD and Associate Professor, St. Thomas 1. Ph.D College, Pala. d) Placement Representative. MD, National Sri. Jose .P Corporate Sector (Garden & Nursery) nursery, Trichur.
    [Show full text]
  • BAGO Gnetum Gnemon Linn
    RESEARCH INFORMATION SERIES ON ECOSYSTEMS Volume 13 No. 2 May – August 2001 BAGO Gnetum gnemon Linn. Compiled by Rafael T. Cadiz Helen B. Florido Foreword In search of locally available natural resources that could be a productive source of livelihood for farmers, we came up with an alternative tree species called Bago (Gnetum gnemon L.). Bago is a multi purpose tree species which is native to the Philippines. It can be a source of food, wood and fiber. Because of its edible young shoot, the species is more popularly known in some upland areas as a vegetable crop. Unknown to our local farmers, Bago trees can become a source of export products. Countries like Indonesia process the seeds and leaves of Bago and export them to Japan and some European countries. Aside from its economic potential, bago can also help in rehabilitating our marginal lands. This species aids in soil improvement because of its beneficial association with some mychorrhizal fungi. Both an economically and ecologically important tree species, Bago could provide great benefits to our rural communities. The information contained in this issue will serve as guide to our readers especially the upland farmers in considering bago for agroforestry, tree planting activities, or tree plantation development. CELSO P. DIAZ Director 1. Common name: Bago 2. Local names: bago, magatungal (Lanao, Cotabato); bago or bagu (Bataan, Tayabas, Camarines); banago (Visaya, Bohol); kunan (Davao); nabo (Bicol) 3. Internationally used common name: Spanish koint fir (English) Other common names: Melinjo, belinjo, bagoe - Indonesia Maninjau - Malaysia Voe, Khalet - Cambodia Peedae, phak, miang phak kaniang, liang - Thailand Gam cay, bet - Vietnam 4.
    [Show full text]
  • 122 Antibacterial Effect of Gnetum Gnemon L. Leaves
    Online-ISSN 2565-1409 Journal of Widya Medika Junior Vol 3. No. 2 April 2021 ANTIBACTERIAL EFFECT OF GNETUM GNEMON L. LEAVES EXTRACT ON STAPHYLOCOCCUS AUREUS Paul J Dayoh1), Endang Isbandiati2), Titien Rahayu3) ABSTRACT Introduction: Bacterial infections are common among doctors in Indonesia, leading to increased use of antibiotics. Increased use of antibiotics, if not accompanied by rational indication, can increase bacterial resistance. At present, alternative medicine from natural ingredients is widely studied, one of which is the leaves of melinjo (Gnetum gnemon L.). Melinjo leaves are thought to contain antibacterial compounds such as flavonoids, tannins, saponins, and alkaloids. Staphylococcus aureus is a round Gram-positive bacteria, that forms grape-like clusters. Staphylococcus aureus is a normal flora on the skin and human mucosa but can be opportunistic pathogens that cause mild to severe infections such as sepsis. Pathogenic Staphylococcus aureus can produce hemolysis blood, frozen plasma, and produce various extracellular enzymes and toxins. Purpose: This research aims to study the MIC and MBC of melinjo leaves extract on the growth of Staphylococcus aureus bacteria. This research is an experimental study with a post- test control group design. Method: Testing conducted using the microdilution method. Melinjo leaves used were extracted by maceration method using 96% ethanol. Samples were Staphylococcus aureus ATCC 25923 from BBLK Surabaya. Results: extract of melinjo leaves (Gnetum gnemon L.) had MIC on Staphylococcus aureus bacteria at a concentration of 640 mg/ml. MBC was not obtained because the extract of melinjo leaves clotted above 1280 mg/ml concentration. Conclusion: Melinjo leaves extract has an antibacterial effect against Staphylococcus aureus, the MIC is obtained at a concentration of 640 mg/ml, and the MBC cannot be determined.
    [Show full text]