Projects in the Robotics and Artificial Intelligence Fields

Total Page:16

File Type:pdf, Size:1020Kb

Projects in the Robotics and Artificial Intelligence Fields Projects in the Robotics and Artificial Intelligence Fields New Energy and Industrial Technology Development Organization Robot and Artificial Intelligence Technology Department 19F MUZA Kawasaki Central Tower, 1310 Omiya-cho, Saiwai-ku Kawasaki City, Kanagawa 212-8554 Japan Tel: +81-44-520-5241 Fax: +81-44-520-5243 URL: https://www.nedo.go.jp/english/index.html November. 2020(1st Edition) Overview of NEDO IntroductionofRobotandArtificialIntelligenceTechnologyDepartment About NEDO Missions and Activities Overview NEDO of ● NEDO is a national research and development agency that creates innovation by promoting technological development necessary for realization of a sustainable society. Message from the Director General ● NEDO acts as an innovation accelerator to contribute to the resolution of social issues by developing and demonstrating high-risk innovative technologies having practical application. Japan’s robot industry has developed with the focus on industrial robots for automobile, electric appliance and other manufacturing industries. However, due to the decreased labor NEDO’s Missions force associated with the dwindling birth rates and aging population, and the pursuit of Addressing energy and improved productivity rates, movements toward the utilization of robots in various fields other Enhancing industrial than large-scale manufacturing have expanded. global environmental technology problems To address such expansion of the robot utilization fields promptly, NEDO has been promoting NEDO actively undertakes the development of new energy and With the aim of raising the level of industrial technology, energy conservation technologies. It also conducts research to NEDO pursues research and development of advanced new research and development of robots to be applied in various fields since initiating robot verify technical results. Through these efforts, NEDO promotes technology. Drawing on its considerable management know- development with the aim of “Humanoid Robotics Project” in 1998. The diversity of service greater utilization of new energy and improved energy conser- how, NEDO carries out projects to explore future technology robot potential was demonstrated by more than 70 types of robot that were developed and Department Technology Intelligence Introduction of Robot and Artificial vation. NEDO also contributes to a stable energy supply and seeds as well as mid- to long-term projects that form the basis exhibited at the Aichi Expo in 2005. In recent years, NEDO has worked on the creation of new the resolution of global environmental problems by promoting of industrial development. It also supports research related to the demonstration of new energy, energy conservation, and practical application. value through social implementation of robots, the development of robots for infrastructure environmental technologies abroad based on knowledge ob- maintenance and disaster response, the development of innovative elemental technologies in tained from domestic projects. anticipation of further application of industrial robots, and many other projects. It prides itself as a leader of Japan’s advances in robot technology. Three Initiatives Based on NEDO’s Fourth Five-Year Plan NEDO has also worked on robot intelligence from early on. While promoting the integration Managing Technological Determining the Direction Fostering Technology- Development to Utilize of Mid- to Long-Term of artificial intelligence (AI) into robots, it has been pursuing social implementation of AI in Based Startups Results in Society Technology Development various industrial fields. It also has started research on agile methods and AI quality to facilitate the utilization of rapidly advancing AI by expanding their application range. These activities are Positioning of NEDO as an Innovation Accelerator greatly contributing to the realization of a smart society, the so-called “Society 5.0,” harnessing synergistic effects of robotics and other technologies. In order to contribute to the resolution of social issues, NEDO formulates technology National Innovation NEDO is also promoting efforts in new fields, including the development of common platforms Framework development, Industry strategies and project plans and, as part of government and accelerator operation its project management, establishes project Ministry of Economy, to safely operate and control small unmanned aircraft (drones) with the aim of realizing a Trade and Industry Policies, budgets Project planning, Public implementation frameworks by combining management Universities transportation revolution, the development of automated driving technology to reduce traffic Evidence for research the capabilities of industry, academia, and policy making institutes accidents and congestion to secure safe and secure movement of people, electric motorization Policy formulation Technology strategy formulation Assessment, government. NEDO also promotes technolo- allocation of funding System design technology for aircraft to enable the reduction of greenhouse gases, and technological Project planning, Promoting practical application gy development by carrying out, evaluating, operation, and allocating funding to promising projects budget management Realizing open innovation development to refine regulations by utilizing digital technology. to accelerate the practical application of project results. NEDO intends to carry out high-risk R&D from a long-term perspective in all fields, and to Main Projects advance toward the social implementation of its development results. Various projects serve as platforms to link diverse stakeholders and create distinct values on a continuous basis. Through NEDO aims to address energy and global environmental problems and raise the level of industrial technology through integrated management of technological the steady implementation of these projects, NEDO aims to create a society where not only safety 158.9 billion yen development. This ranges from the discovery of technology seeds to the promotion and security but also various requirements and contrasting values of individuals can be realized. of mid- to long-term projects and support for practical application. It will deliver the results of technological development to build a sense of hope for a bright and FY2020 tentative budget * As only an outline of NEDO’s activities is given below, individual budget amounts do not add up to the total. joyful future under the concept of “Robotics & AI for Happiness.” We continue our challenges with PDCA – passion (P) to work on projects, decisions (D), connections (C) of management of Energy Systems 56.3 billion yen Energy Conservation and Environment 43.4 billion yen future projects and activation (A) of ourselves and related parties. Areas of focus Areas of focus ●Technology to harness unutilized thermal energy This brochure introduces the activities of NEDO’s Robot and Artificial Intelligence Technology ●System provision technology ●Environmentally-friendly steel manufacturing technology ●Energy storage technology such as batteries ●Development of high-efficiency coal-fired power generation technology Department. It would be highly appreciated if you would take the time to read it. ● Technology related to hydrogen production, storage, trans- ●CO2 capture, utilization and storage port, and use ●Fluorocarbon recovery technology November 2020 ●Renewable energy technology ● 3R technology, including resource screening and metal refining technology ●International demonstrations, Joint Crediting Mechanism activities, and others Industrial Technology 45 billion yen New Industry Creation and Discovery of Technology Seeds 6.6 billion yen Areas of focus Areas of focus ●Robot and AI technology ●Fostering technology-based startups ●IoT, electronics, and information technology ●Promotion of open innovation Director General, Robot and Artificial Intelligence Technology Department, NEDO ●Manufacturing technology ●Materials and nanotechnology YUMITORI Shuji ●Biotechnology 2 Introduction of Projects in the Robotics and Artificial Intelligence Fields Introduction of Projects in the Robotics and Artificial Intelligence Fields 3 3 Overview of NEDO IntroductionofRobotandArtificialIntelligenceTechnologyDepartment About NEDO Missions and Activities Overview NEDO of ● NEDO is a national research and development agency that creates innovation by promoting technological development necessary for realization of a sustainable society. Message from the Director General ● NEDO acts as an innovation accelerator to contribute to the resolution of social issues by developing and demonstrating high-risk innovative technologies having practical application. Japan’s robot industry has developed with the focus on industrial robots for automobile, electric appliance and other manufacturing industries. However, due to the decreased labor NEDO’s Missions force associated with the dwindling birth rates and aging population, and the pursuit of Addressing energy and improved productivity rates, movements toward the utilization of robots in various fields other Enhancing industrial than large-scale manufacturing have expanded. global environmental technology problems To address such expansion of the robot utilization fields promptly, NEDO has been promoting NEDO actively undertakes the development of new energy and With the aim of raising the level of industrial technology, energy conservation technologies. It also conducts research to NEDO pursues research and development of advanced new research and development
Recommended publications
  • A Retrospective of the AAAI Robot Competitions
    AI Magazine Volume 18 Number 1 (1997) (© AAAI) Articles A Retrospective of the AAAI Robot Competitions Pete Bonasso and Thomas Dean ■ This article is the content of an invited talk given this development. We found it helpful to by the authors at the Thirteenth National Confer- draw comparisons with developments in avia- ence on Artificial Intelligence (AAAI-96). The tion. The comparisons allow us to make use- piece begins with a short history of the competi- ful parallels with regard to aspirations, moti- tion, then discusses the technical challenges and vations, successes, and failures. the political and cultural issues associated with bringing it off every year. We also cover the sci- Dreams ence and engineering involved with the robot tasks and the educational and commercial aspects Flying has always seemed like a particularly of the competition. We finish with a discussion elegant way of getting from one place to of the community formed by the organizers, par- another. The dream for would-be aviators is ticipants, and the conference attendees. The orig- to soar like a bird; for many researchers in AI, inal talk made liberal use of video clips and slide the dream is to emulate a human. There are photographs; so, we have expanded the text and many variations on these dreams, and some added photographs to make up for the lack of resulted in several fanciful manifestations. In such media. the case of aviation, some believed that it should be possible for humans to fly by sim- here have been five years of robot com- ply strapping on wings.
    [Show full text]
  • Towards Autonomous Multi-Robot Mobile Deposition for Construction
    YouWasps: Towards Autonomous Multi-Robot Mobile Deposition for Construction Julius Sustarevas1, Benjamin K. X. Tan1, David Gerber2, Robert Stuart-Smith1;3 and Vijay M. Pawar1;3 Abstract— Mobile multi-robot construction systems offer new ways to optimise the on-site construction process. In this paper we begin to investigate the functionality requirements for controlling a team of robots to build structures much greater than their individual workspace. To achieve these aims, we present a mobile extruder robot called YouWasp. We also begin to explore methods for collision aware printing and construction task decomposition and allocation. These are deployed via YouWasp and enable it to deposit material autonomously. In doing so, we are able to evaluate the potential for parallelization of tasks and printing autonomy in simulation as well as physical team of robots. Altogether, these results provide a foundation for future work that enable fleets of mobile construction systems to cooperate and help us shape our built environment in new ways. Fig. 1: Visualisation of YouWasp team of robots deployed in a construction scenario. I. INTRODUCTION The US$8.8 trillion global market value[1] of the con- manufacturing companies such as Apis Cor in Russia, Win- struction sector, shows the unmatched effort that construc- sun Decoration Engineering Company in China, NASA’s tion, as a human endevour, receives. In fact, construction 3D printing in Zero-G and US Armed Forces on-site 3D is often seen as the sector at the forefront of tackling printed barracks. Within this context, typical examples use global challenges like population growth, urbanisation and either gantry-type solutions or industrial robots with 3-to- sustainability[2].
    [Show full text]
  • 8. Robotic Systems Architectures and Programming
    187 8. RoboticRobotic Systems Architectures and Programming Syste David Kortenkamp, Reid Simmons 8.1 Overview.............................................. 187 Robot software systems tend to be complex. This 8.1.1 Special Needs complexity is due, in large part, to the need to con- of Robot Architectures .................. 188 trol diverse sensors and actuators in real time, in 8.1.2 Modularity and Hierarchy.............. 188 the face of significant uncertainty and noise. Robot 8.1.3 Software Development Tools.......... 188 systems must work to achieve tasks while moni- toring for, and reacting to, unexpected situations. 8.2 History ................................................ 189 Doing all this concurrently and asynchronously 8.2.1 Subsumption ............................... 189 adds immensely to system complexity. 8.2.2 Layered Robot Control Architectures 190 The use of a well-conceived architecture, 8.3 Architectural Components ..................... 193 together with programming tools that support 8.3.1 Connecting Components................ 193 the architecture, can often help to manage that 8.3.2 Behavioral Control........................ 195 complexity. Currently, there is no single archi- 8.3.3 Executive .................................... 196 tecture that is best for all applications – different 8.3.4 Planning ..................................... 199 architectures have different advantages and dis- 8.4 Case Study – GRACE ............................... 200 advantages. It is important to understand those strengths and weaknesses when choosing an 8.5 The Art of Robot Architectures ............... 202 architectural approach for a given application. 8.6 Conclusions and Further Reading ........... 203 This chapter presents various approaches to architecting robotic systems. It starts by defining References .................................................. 204 terms and setting the context, including a recount- ing of the historical developments in the area of robot architectures.
    [Show full text]
  • National Robotics Initiative (NRI)(Nsf11553)
    This document has been archived and replaced by NSF 12-607. National Robotics Initiative (NRI) The realization of co-robots acting in direct support of individuals and groups PROGRAM SOLICITATION NSF 11-553 National Science Foundation Directorate for Computer & Information Science & Engineering Division of Information & Intelligent Systems Directorate for Social, Behavioral & Economic Sciences Directorate for Engineering Directorate for Education & Human Resources National Institutes of Health National Institute of Neurological Disorders and Stroke National Institute on Aging National Institute of Biomedical Imaging and Bioengineering National Center for Research Resources Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institute of Nursing Research U.S. Dept. of Agriculture National Institute of Food and Agriculture National Aeronautics and Space Administration Directorate for Education and Human Resources, Game Changing Technology Division Letter of Intent Due Date(s) (required) (due by 5 p.m. proposer's local time): October 01, 2011 October 1, Annually Thereafter Small Proposals December 15, 2011 December 15, Annually Thereafter Group Large Proposals Full Proposal Deadline(s) (due by 5 p.m. proposer's local time): November 03, 2011 November 3, Annually Thereafter Small Proposals January 18, 2012 January 18, Annually Thereafter Group Large Proposals IMPORTANT INFORMATION AND REVISION NOTES Public Briefings: One or more collaborative webinar briefings with question and answer functionality will
    [Show full text]
  • Administrators Guide to First Robotics Program Expenses
    ADMINISTRATORS GUIDE TO FIRST ROBOTICS PROGRAM EXPENSES FIRST has 4 programs under the umbrella all foCused on inspiring more students to pursue Careers in sCienCe, teChnology, engineering, and mathematiCs. All of the programs use a robot Competition exCept the youngest group which is for K-3 and it is more of a make-it/engineering expo. Junior FIRST LEGO league (JrFLL) for students kindergarten through third grade is a researCh/design challenge and introduction to the engineering process. Kids go on a research journey, create a poster and LEGO model Present at Expo to reviewers and then all teams reCeive reCognition. Expos can be organized at the local level and a regional expo will be held in March. Costs are: ($50 - $300 per season) • $25 JrFLL program fees (annual dues) • $25 Expo registration fees • Teams Can use any LEGO, must have one moving part with a motor. FIRST does offer a large kit of parts for about $150 Registration: Never closes Register Here: http://www.usfirst.org/robotiCsprograms/jr.fll/registration Competitions/tournaments: Expo is held in the spring (RGV Local) FIRST Lego league (FLL) has a new game theme eaCh year, which also includes a student chosen project in whiCh they researCh and purpose a solution that fits their Community’s needs. The Challenge is revealed in early September eaCh year and the Competition season is from November – MarCh. Team size is limited to 10 students. Costs are: ($1,500 - $3,000 first season, then $1,000 - $2,500 per season to sustain program) • $225 FLL program fees (annual dues) • $300 -$420 Lego Mindstorms robot kit (re-usable each year) • $65 game field set-up kit (new each year) • $70 - $90 tournament registration fees • $500 - $1,000 for team apparel, meals, presentation materials, promotional items for team spirit, etc.
    [Show full text]
  • Fresh Innovators Put Ideas Into Action in Robot Contest March 2010 Texas Instruments 3
    WHITE PAPER Jean Anne Booth Director of WW Stellaris Marketing Fresh Innovators Put and Customer-Facing Engineering Sue Cozart Applications Engineer Ideas into Action in Robot Contest Introduction The annual FIRST® Robotics Challenge (FRC) inspires young men and women to explore applications of motors to make good use of mechanical Texas Instruments puts tools motion in imaginative ways, all in the name of a real-life game. In doing so, in the hands of creators of these high school students learn to work on a team toward a common goal, tomorrow’s machine control stretch their knowledge and exercise their creativity, apply critical thinking and systems. develop a strategic game plan, and move from theoretical and book learning to practical application of concepts, all the while learning valuable lessons that will help them in the workplace and in life throughout their adulthood. But as much as anything, the FIRST® programs are designed to interest children in science and math by making it fun and engaging through the use of robots. Texas Instruments is one of the FRC suppliers, lending its motor control technology to the materials and tool kit from which each team of students builds its robot. The Stellaris® microcontroller-based motor control system and software used by the students is from the same Jaguar® developer's kit used by professionals to build sophisticated motion-control systems used in industry day in and day out. The easy-to-use kits let naive high school students, as well as industry professionals, control various types of motors in complex systems without having to comprehend the underlying algorithms in use or details of the microcontroller (MCU) program code that is implementing the algorithms.
    [Show full text]
  • Multiprocess Communication and Control Software for Humanoid Robots Neil T
    IEEE Robotics and Automation Magazine Multiprocess Communication and Control Software for Humanoid Robots Neil T. Dantam∗ Daniel M. Lofaroy Ayonga Hereidx Paul Y. Ohz Aaron D. Amesx Mike Stilman∗ I. Introduction orrect real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for Clocomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multi-process software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operating. This approach also assists with modularity and concurrency. For real-time tasks such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general purpose and real-time needs [19], [17], [13], [9], [15]. Typical methods focus on reliable communication or network-transparency and accept a trade-off of increased mes- sage latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss its application for real-time, multiprocess control on three humanoid robots (Fig. 1). There are several design decisions that influenced this robot software and motivated development of the Ach library. First, to utilize decades of prior development and engineering, we implement our real-time system on top of a POSIX-like Operating System (OS)2.
    [Show full text]
  • CYBORG Seagulls Are Ready to Recycle
    CYBORG Seagulls are ready to recycle By Edward Stratton The Daily Astorian Published: February 24, 2015 10:45AM The robot­building season for 25 Seaside and Astoria students on the C.Y.B.O.R.G. Seagulls robotics team ended Feb. 17. SEASIDE — Seaside High School’s student­built robot SARA is in the bag and ready to recycle. The robot­building season for 25 Seaside and Astoria students on the CYBORG Seagulls robotics team ended Feb. 17. Now the team prepares to send 15 students to compete against 31 other teams in the divisional qualifier of the FIRST Robotics Competition starting Thursday in Oregon City. From left, Pedro Martinez, Austin JOSHUA BESSEX — THE DAILY ASTORIAN Milliren and Connor Adams, test out their SARA (Stacking Agile Robot The competition and its teams are chock­full of Assembly) robot during the CYBORG Seagulls robotic team meeting. acronyms, including Seaside’s team name The robot is designed to pick up recycling cans and cargo boxes and move them. The team will use SARA to compete in Recycle Rush, a (Creative Young Brains Observing and robotics game based on recycling Thursday through Saturday. Redefining Greatness, or CYBORG) and the Buy this photo league they compete in (For Inspiration and 1 of 6 Recognition of Science and Technology, or FIRST). For more information on the CYBORG Seagulls and the Building SARA FIRST Robotics Competition, visit www.team3673.org The CYBORG Seagulls, now in their fifth year of the competition, had from Jan. 4 to Feb. 17 to build and program SARA in their workshop.
    [Show full text]
  • Applying Machine Learning to Robotics WHITEPAPER
    WHITEPAPER Credit: Pixabay Applying Machine Learning to Robotics TABLE OF CONTENTS MACHINE LEARNING - TOP MARKS FOR POTENTIAL MACHINE LEARNING SOLVES BUSINESS PROBLEMS CURRENT TECHNOLOGIES AND SUPPLIERS MACHINE LEARNING IN ROBOTICS: EXAMPLE 1 MACHINE LEARNING IN ROBOTICS: EXAMPLE 2 MACHINE LEARNING IN ROBOTICS: EXAMPLE 3 NEXT-GENERATION INDUSTRY WILL RELY ON MACHINE LEARNING roboticsbusinessreview.com 2 APPLYING MACHINE LEARNING TO ROBOTICS Advances in artificial intelligence are making robots smarter at pick-and- place operations, drones more autonomous, and the Industrial Internet of Things more connected. Where else could machine learning help? By Andrew Williams A growing number of businesses worldwide are waking up to the potentially transformative capabilities of machine learning - particularly when applied to robotics systems in the workplace. In recent years, the capacity of machine learning to improve efficiency in fields as diverse as manufacturing assembly, pick-and-place operations, quality control and drone systems has also gathered a great deal of momentum. Knowing that machine learning is improving also heightens awareness of great strides being made in artificial intelligence (AI), to the extent that the two technologies are often viewed interchangeably. Major recent advances in topics such as logic and data analytics, algorithm development, and predictive analytics are also driving AI’s growth. In this report, we’ll review the latest cutting-edge machine learning research and development around the globe, and explore some emerging applications in the field of robotics. MACHINE LEARNING - TOP MARKS FOR POTENTIAL A September 2017 report by Research and Markets predicts the global machine learning market will grow from $1.4 billion in 2017 to $8.81 billion by 2022, with a compound annual growth rate of 44.1%.
    [Show full text]
  • ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation
    sustainability Article ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation Yi-Zeng Hsieh 1,2,3 , Shih-Syun Lin 4,* , Yu-Cin Luo 1, Yu-Lin Jeng 5 , Shih-Wei Tan 1,*, Chao-Rong Chen 6 and Pei-Ying Chiang 7 1 Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan; [email protected] (Y.-Z.H.); [email protected] (Y.-C.L.) 2 Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202, Taiwan 3 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 4 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 5 Department of Information Management, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan; [email protected] 6 Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] 7 Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] * Correspondence: [email protected] (S.-S.L.); [email protected] (S.-W.T.) Received: 3 March 2020; Accepted: 17 June 2020; Published: 12 July 2020 Abstract: Under the vigorous development of global anticipatory computing in recent years, there have been numerous applications of artificial intelligence (AI) in people’s daily lives. Learning analytics of big data can assist students, teachers, and school administrators to gain new knowledge and estimate learning information; in turn, the enhanced education contributes to the rapid development of science and technology.
    [Show full text]
  • Design of a Canine Inspired Quadruped Robot As a Platform for Synthetic Neural Network Control
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 7-15-2019 Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control Cody Warren Scharzenberger Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Mechanical Engineering Commons, and the Robotics Commons Let us know how access to this document benefits ou.y Recommended Citation Scharzenberger, Cody Warren, "Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control" (2019). Dissertations and Theses. Paper 5135. https://doi.org/10.15760/etd.7014 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control by Cody Warren Scharzenberger A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Thesis Committee: Alexander Hunt, Chair David Turcic Sung Yi Portland State University 2019 Abstract Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs).
    [Show full text]
  • CPS Platform Approach to Industrial Robots
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Association for Information Systems AIS Electronic Library (AISeL) Pacific Asia Conference on Information Systems PACIS 2015 Proceedings (PACIS) 2015 CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions Martin Mikusz University of Stuttgart, [email protected] Akos Csiszar University of Stuttgart, [email protected] Follow this and additional works at: http://aisel.aisnet.org/pacis2015 Recommended Citation Mikusz, Martin and Csiszar, Akos, "CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions" (2015). PACIS 2015 Proceedings. 176. http://aisel.aisnet.org/pacis2015/176 This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. CPS PLATFORM APPROACH TO INDUSTRIAL ROBOTS: STATE OF THE PRACTICE, POTENTIALS, FUTURE RESEARCH DIRECTIONS Martin Mikusz, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Akos Csiszar, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Abstract Approaches, such as Cloud Robotics, Robot-as-a-Service, merged Internet of Things and robotics, and Cyber-Physical Systems (CPS) in production, show that the industrial robotics domain experiences a paradigm shift that increasingly links robots in real-life factories with virtual reality.
    [Show full text]