Applying Machine Learning to Robotics WHITEPAPER

Total Page:16

File Type:pdf, Size:1020Kb

Applying Machine Learning to Robotics WHITEPAPER WHITEPAPER Credit: Pixabay Applying Machine Learning to Robotics TABLE OF CONTENTS MACHINE LEARNING - TOP MARKS FOR POTENTIAL MACHINE LEARNING SOLVES BUSINESS PROBLEMS CURRENT TECHNOLOGIES AND SUPPLIERS MACHINE LEARNING IN ROBOTICS: EXAMPLE 1 MACHINE LEARNING IN ROBOTICS: EXAMPLE 2 MACHINE LEARNING IN ROBOTICS: EXAMPLE 3 NEXT-GENERATION INDUSTRY WILL RELY ON MACHINE LEARNING roboticsbusinessreview.com 2 APPLYING MACHINE LEARNING TO ROBOTICS Advances in artificial intelligence are making robots smarter at pick-and- place operations, drones more autonomous, and the Industrial Internet of Things more connected. Where else could machine learning help? By Andrew Williams A growing number of businesses worldwide are waking up to the potentially transformative capabilities of machine learning - particularly when applied to robotics systems in the workplace. In recent years, the capacity of machine learning to improve efficiency in fields as diverse as manufacturing assembly, pick-and-place operations, quality control and drone systems has also gathered a great deal of momentum. Knowing that machine learning is improving also heightens awareness of great strides being made in artificial intelligence (AI), to the extent that the two technologies are often viewed interchangeably. Major recent advances in topics such as logic and data analytics, algorithm development, and predictive analytics are also driving AI’s growth. In this report, we’ll review the latest cutting-edge machine learning research and development around the globe, and explore some emerging applications in the field of robotics. MACHINE LEARNING - TOP MARKS FOR POTENTIAL A September 2017 report by Research and Markets predicts the global machine learning market will grow from $1.4 billion in 2017 to $8.81 billion by 2022, with a compound annual growth rate of 44.1%. Driving the growth is “the proliferation of large and multidimensional data sets, rising focus towards solving real-time problems from data,” and rising demand for sophisticated algorithm platforms and tools, the report stated. When applying machine learning to robotics, a recent McKinsey Global Institute study puts the total annual external investment in AI between $8 billion to $12 billion in 2016, with machine learning accounting for almost 60% of that total. The report’s authors state that robotics and speech recognition are among the most popular investment areas, with investors preferring code- based machine learning start-ups because of how agile they can scale up and incorporate new features. roboticsbusinessreview.com 3 MACHINE LEARNING SOLVES BUSINESS PROBLEMS Because machine learning relies on algorithms that can learn from data, many companies find they no longer need to depend on rules-based programming. In recent years, the increasing ability for such systems to learn independently has become more important – particularly as businesses worldwide struggle to keep up with otherwise unmanageable volumes of complex data. This has also led to the introduction of machine learning in several new sectors. For example, the recent Evans Data Corporation Global Development Survey found machine learning applications most frequently created in the following areas: ➤ Internet of Things (11.4% of the total) ➤ Professional, Scientific and Technical Services (10%) ➤ Manufacturing industries (9.4%) ➤ Telecommunications (8.3%) ➤ Utilities / energy (8.1%) ➤ Robotics (7.2%) ➤ Finance / insurance (6.8%) The report stated that almost 6.5 million developers worldwide are now using either AI or machine learning in their projects. Within the robotics sector itself, a recent Techemergence study listed computer vision, imitation learning, self-supervised learning, assistive and medical technologies, and multi-agent learning as the top five current machine learning applications in robotics. CURRENT TECHNOLOGIES AND SUPPLIERS Here’s a quick overview of some companies using machine learning within the software or robotics hardware space: Company Description / Project AIBrain Constructs AI solutions for smartphones and robotics applications. Main tools include the AI agent AICoRE and intelligent robot software platform iRSP. Amazon Among other things, the global behemoth’s Amazon Machine Learning platform is used by companies to predict and find patterns using data. Anki Employs a range of machine learning algorithms dubbed the ‘emotional engine’ in products like its Cozmo consumer robot. Apple Employs machine learning and deep learning technologies across a range of its products and services, perhaps most notably in its flagship voice assistant, Siri. roboticsbusinessreview.com 4 Company Description / Project CloudMinds Connects robots and smart devices to cloud-based systems for artificial intelligence computation or analysis. DataRobot Provides an automated machine learning platform, as well as services and education. Embodied Uses recent advances in deep imitation learning and deep Intelligence reinforcement learning to create AI software that simplifies the process of teaching robots new and complex skills. Facebook The global social media giant runs the Facebook Artificial Intelligence Research (FAIR) team, which is training AI bots in the skills of negotiation. FANUC Created the FANUC Intelligent Edge Link & Drive (FIELD) System, an open platform that ‘enables the execution of various Industrial IoT applications within a factory focusing on interconnecting edge- heavy devices such as machine tools, robots, PLCs and sensors.’ GreenSight Provides drone mapping for golf courses and agriculture markets Agronomics based on machine learning. H2O The machine-learning specialist recently partnered with NVIDIA to help create GPU-enabled deep learning AI in computers, robots, and self-driving cars. Hummingbird Data and imagery analytics company that uses a combination Technologies of drones and machine learning techniques for crop science applications. IBM An early frontrunner in machine learning. Among other projects, its Watson IoT system has been used in commercial robots. One interesting example is the Q.bo One, which ‘has the potential to be used in various commercial settings, including hospitality, financial services, medical assistance, home healthcare, and other service industries.’ Intel Recently launched the Loihi AI-powered ‘self learning chip’, aimed at improving the autonomy and performance efficiency of robots. Kindred Developing intelligent warehouse robots that ‘bring together reinforcement learning, machine learning and remote human guidance’ to ‘solve real-world problems alongside humans in complex, changing environments like today’s supply chain.’ KUKA Working with Huawei on a range of machine learning initiatives, which also established a ‘joint intuitive robot programming team to explore the use of imitative deep learning in advanced manufacturing environments.’ Presenso Creates software tools that use machine learning techniques to support predictive maintenance for machinery and robotic systems. Vicarious Combining insights from generative probabilistic models and systems neuroscience to create artificial general intelligence for robots. roboticsbusinessreview.com 5 MACHINE LEARNING IN ROBOTICS: EXAMPLE 1 The rapidly advancing capabilities of machine learning are helping individual robots learn specific tasks. An interesting example is the SKIL Somatic tool, developed by San Francisco-based start-up Skymind. The company applies deep learning methods to teach a robot to click the correct elevator button when prompted, using a camera mounted to the robot. By applying machine learning, the robot can look at an elevator control panel and understand which button is floor 1, which button is floor 2, etc. The SKIL Somatic tool uses an array of cutting-edge technology, including a convolutional neural network (CNN, or ConvNet)-based vision system, and Long Short-Term Memory (LSTM)-based sensor fusion. The tool also features an RL4J-based guidance system - a reinforcement learning framework integrated with Deeplearning4j and released under an Apache 2.0 open- source license. Chris Nicholson, CEO and Co-founder of Skymind, said the SKIL Somatic tool is like the “operating system” installed in the robots, whereas the open-source Deeplearning4j programming library is used “as the engine behind these predictions.” “The key advantage of SKIL Somatic is the integrations with the Robot Operating System (ROS), a widely used framework for writing robot software, support for reinforcement learning, and a method to manage models baked in,” Nicholson said. “It’s basically an entire package for enabling robots to learn human-like functionality.” Nicholson said the potential market for such tools is certainly expanding, particularly in Asia. He said the company as seen lots of interest in robots that can assist humans. For example, one company contacted Skymind to see if SKIL Somatic could be used for indoor store navigation – having a robot guide customers to the item they are looking for. Another common use case is developing unmanned aerial vehicles (UAVs) that can “navigate terrain themselves and find items of interest without human interference,” Nicholson said. “I’d say there are two promising industries, human assistance - for elderly care, retail and so on - and UAVs, for surveillance, monitoring crops and finding poachers,” Nicholson said. “There could be more, but these two are top of mind.” roboticsbusinessreview.com 6 MACHINE LEARNING IN ROBOTICS: EXAMPLE 2 In a manufacturing environment, an interesting application
Recommended publications
  • Towards Autonomous Multi-Robot Mobile Deposition for Construction
    YouWasps: Towards Autonomous Multi-Robot Mobile Deposition for Construction Julius Sustarevas1, Benjamin K. X. Tan1, David Gerber2, Robert Stuart-Smith1;3 and Vijay M. Pawar1;3 Abstract— Mobile multi-robot construction systems offer new ways to optimise the on-site construction process. In this paper we begin to investigate the functionality requirements for controlling a team of robots to build structures much greater than their individual workspace. To achieve these aims, we present a mobile extruder robot called YouWasp. We also begin to explore methods for collision aware printing and construction task decomposition and allocation. These are deployed via YouWasp and enable it to deposit material autonomously. In doing so, we are able to evaluate the potential for parallelization of tasks and printing autonomy in simulation as well as physical team of robots. Altogether, these results provide a foundation for future work that enable fleets of mobile construction systems to cooperate and help us shape our built environment in new ways. Fig. 1: Visualisation of YouWasp team of robots deployed in a construction scenario. I. INTRODUCTION The US$8.8 trillion global market value[1] of the con- manufacturing companies such as Apis Cor in Russia, Win- struction sector, shows the unmatched effort that construc- sun Decoration Engineering Company in China, NASA’s tion, as a human endevour, receives. In fact, construction 3D printing in Zero-G and US Armed Forces on-site 3D is often seen as the sector at the forefront of tackling printed barracks. Within this context, typical examples use global challenges like population growth, urbanisation and either gantry-type solutions or industrial robots with 3-to- sustainability[2].
    [Show full text]
  • 8. Robotic Systems Architectures and Programming
    187 8. RoboticRobotic Systems Architectures and Programming Syste David Kortenkamp, Reid Simmons 8.1 Overview.............................................. 187 Robot software systems tend to be complex. This 8.1.1 Special Needs complexity is due, in large part, to the need to con- of Robot Architectures .................. 188 trol diverse sensors and actuators in real time, in 8.1.2 Modularity and Hierarchy.............. 188 the face of significant uncertainty and noise. Robot 8.1.3 Software Development Tools.......... 188 systems must work to achieve tasks while moni- toring for, and reacting to, unexpected situations. 8.2 History ................................................ 189 Doing all this concurrently and asynchronously 8.2.1 Subsumption ............................... 189 adds immensely to system complexity. 8.2.2 Layered Robot Control Architectures 190 The use of a well-conceived architecture, 8.3 Architectural Components ..................... 193 together with programming tools that support 8.3.1 Connecting Components................ 193 the architecture, can often help to manage that 8.3.2 Behavioral Control........................ 195 complexity. Currently, there is no single archi- 8.3.3 Executive .................................... 196 tecture that is best for all applications – different 8.3.4 Planning ..................................... 199 architectures have different advantages and dis- 8.4 Case Study – GRACE ............................... 200 advantages. It is important to understand those strengths and weaknesses when choosing an 8.5 The Art of Robot Architectures ............... 202 architectural approach for a given application. 8.6 Conclusions and Further Reading ........... 203 This chapter presents various approaches to architecting robotic systems. It starts by defining References .................................................. 204 terms and setting the context, including a recount- ing of the historical developments in the area of robot architectures.
    [Show full text]
  • National Robotics Initiative (NRI)(Nsf11553)
    This document has been archived and replaced by NSF 12-607. National Robotics Initiative (NRI) The realization of co-robots acting in direct support of individuals and groups PROGRAM SOLICITATION NSF 11-553 National Science Foundation Directorate for Computer & Information Science & Engineering Division of Information & Intelligent Systems Directorate for Social, Behavioral & Economic Sciences Directorate for Engineering Directorate for Education & Human Resources National Institutes of Health National Institute of Neurological Disorders and Stroke National Institute on Aging National Institute of Biomedical Imaging and Bioengineering National Center for Research Resources Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institute of Nursing Research U.S. Dept. of Agriculture National Institute of Food and Agriculture National Aeronautics and Space Administration Directorate for Education and Human Resources, Game Changing Technology Division Letter of Intent Due Date(s) (required) (due by 5 p.m. proposer's local time): October 01, 2011 October 1, Annually Thereafter Small Proposals December 15, 2011 December 15, Annually Thereafter Group Large Proposals Full Proposal Deadline(s) (due by 5 p.m. proposer's local time): November 03, 2011 November 3, Annually Thereafter Small Proposals January 18, 2012 January 18, Annually Thereafter Group Large Proposals IMPORTANT INFORMATION AND REVISION NOTES Public Briefings: One or more collaborative webinar briefings with question and answer functionality will
    [Show full text]
  • Multiprocess Communication and Control Software for Humanoid Robots Neil T
    IEEE Robotics and Automation Magazine Multiprocess Communication and Control Software for Humanoid Robots Neil T. Dantam∗ Daniel M. Lofaroy Ayonga Hereidx Paul Y. Ohz Aaron D. Amesx Mike Stilman∗ I. Introduction orrect real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for Clocomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multi-process software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operating. This approach also assists with modularity and concurrency. For real-time tasks such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general purpose and real-time needs [19], [17], [13], [9], [15]. Typical methods focus on reliable communication or network-transparency and accept a trade-off of increased mes- sage latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss its application for real-time, multiprocess control on three humanoid robots (Fig. 1). There are several design decisions that influenced this robot software and motivated development of the Ach library. First, to utilize decades of prior development and engineering, we implement our real-time system on top of a POSIX-like Operating System (OS)2.
    [Show full text]
  • ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation
    sustainability Article ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation Yi-Zeng Hsieh 1,2,3 , Shih-Syun Lin 4,* , Yu-Cin Luo 1, Yu-Lin Jeng 5 , Shih-Wei Tan 1,*, Chao-Rong Chen 6 and Pei-Ying Chiang 7 1 Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan; [email protected] (Y.-Z.H.); [email protected] (Y.-C.L.) 2 Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202, Taiwan 3 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 4 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 5 Department of Information Management, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan; [email protected] 6 Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] 7 Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] * Correspondence: [email protected] (S.-S.L.); [email protected] (S.-W.T.) Received: 3 March 2020; Accepted: 17 June 2020; Published: 12 July 2020 Abstract: Under the vigorous development of global anticipatory computing in recent years, there have been numerous applications of artificial intelligence (AI) in people’s daily lives. Learning analytics of big data can assist students, teachers, and school administrators to gain new knowledge and estimate learning information; in turn, the enhanced education contributes to the rapid development of science and technology.
    [Show full text]
  • Design of a Canine Inspired Quadruped Robot As a Platform for Synthetic Neural Network Control
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 7-15-2019 Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control Cody Warren Scharzenberger Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Mechanical Engineering Commons, and the Robotics Commons Let us know how access to this document benefits ou.y Recommended Citation Scharzenberger, Cody Warren, "Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control" (2019). Dissertations and Theses. Paper 5135. https://doi.org/10.15760/etd.7014 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control by Cody Warren Scharzenberger A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Thesis Committee: Alexander Hunt, Chair David Turcic Sung Yi Portland State University 2019 Abstract Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs).
    [Show full text]
  • CPS Platform Approach to Industrial Robots
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Association for Information Systems AIS Electronic Library (AISeL) Pacific Asia Conference on Information Systems PACIS 2015 Proceedings (PACIS) 2015 CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions Martin Mikusz University of Stuttgart, [email protected] Akos Csiszar University of Stuttgart, [email protected] Follow this and additional works at: http://aisel.aisnet.org/pacis2015 Recommended Citation Mikusz, Martin and Csiszar, Akos, "CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions" (2015). PACIS 2015 Proceedings. 176. http://aisel.aisnet.org/pacis2015/176 This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. CPS PLATFORM APPROACH TO INDUSTRIAL ROBOTS: STATE OF THE PRACTICE, POTENTIALS, FUTURE RESEARCH DIRECTIONS Martin Mikusz, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Akos Csiszar, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Abstract Approaches, such as Cloud Robotics, Robot-as-a-Service, merged Internet of Things and robotics, and Cyber-Physical Systems (CPS) in production, show that the industrial robotics domain experiences a paradigm shift that increasingly links robots in real-life factories with virtual reality.
    [Show full text]
  • ELEMENTS of ROBOTICS Mordechai Ben-Ari Francesco Mondada Elements of Robotics Elements of Robotics Mordechai Ben-Ari • Francesco Mondada
    MORDECHAI BEN-ARI, FRANCESCO MONDADA ELEMENTS OF ROBOTICS Mordechai Ben-Ari Francesco Mondada Elements of Robotics Elements of Robotics Mordechai Ben-Ari • Francesco Mondada Elements of Robotics Mordechai Ben-Ari Francesco Mondada Department of Science Teaching Laboratoire de Systèmes Robotiques Weizmann Institute of Science Ecole Polytechnique Fédérale de Lausanne Rehovot Lausanne Israel Switzerland ISBN 978-3-319-62532-4 ISBN 978-3-319-62533-1 (eBook) https://doi.org/10.1007/978-3-319-62533-1 Library of Congress Control Number: 2017950255 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Artificial Intelligence in 2027
    AI MATTERS, VOLUME 4, ISSUE 1 4(1) 2018 Artificial Intelligence in 2027 Maria Gini (University of Minnesota; [email protected]) Noa Agmon (Bar-Ilan University; [email protected]) Fausto Giunchiglia (University of Trento; [email protected]) Sven Koenig (University of Southern California; [email protected]) Kevin Leyton-Brown (University of British Columbia; [email protected]) DOI: 10.1145/3203247.3203251 Introduction Noa Agmon, Bar-Ilan University1 Every day we read in the scientific and popu- The discussion about the fourth industrial rev- lar press about advances in AI and how AI is olution, and the part of AI and robotics within changing our lives. Things are moving at a fast it, is wide. In the context of this revolution, au- pace, with no obvious end in sight. tonomous cars and other types of robots are expected to gain popularity and, among other What will AI be ten years from now? A tech- things, to take over human labor. While surveys nology so pervasive in our daily lives that we like “When will AI exceed human performance?” will no longer think about it? A dream that has (GSD+17) report that some researchers ex- failed to materialize? A mix of successes and pect robots to be capable of performing human failures still far from achieving its promises? tasks, such as running five kilometers, within At the 2017 International Joint Conference on ten years, this will probably take much longer Artificial Intelligence (IJCAI), Maria Gini chaired given the current state of robotic development. a panel to discuss “AI in 2027.” There were Today, the use of robots is generally limited to four panelists: Noa Agmon (Bar-Ilan Univer- three categories: non-critical tasks; settings sity, Israel), Fausto Giunchiglia (University of in which robots are semi-autonomous, tele- Trento, Italy), Sven Koenig (University of South- operated, or remote-controlled (namely, not ern California, US), and Kevin Leyton-Brown fully autonomous); and highly structured set- (University of British Columbia, Canada).
    [Show full text]
  • (ROS) Based Humanoid Robot Control Ganesh Kumar Kalyani
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Middlesex University Research Repository A Robot Operating System (ROS) Based Humanoid Robot Control Ganesh Kumar Kalyani A Thesis submitted to Middlesex University in fulfillment of the requirements for degree of MASTER OF SCIENCE Department of Design Engineering & Mathematics Middlesex University, London Supervisors Dr. Vaibhav Gandhi Dr. Zhijun Yang November 2016 Tables of Contents Table of Contents…………………………………………………………………………………….II List of Figures…………………………………………………………………………………….….IV List of Tables………………………………………………………………………………….……...V Acknowledgement…………………………………………………………………………………...VI Abstract……………………………………………………………………………………………..VII List of Acronyms and Abbreviations……………………………………………………………..VIII 1. Introduction .................................................................................................................................. 1 1.1 Introduction ............................................................................................................................ 1 1.2 Rationale ................................................................................................................................. 6 1.3 Aim and Objective ................................................................................................................... 7 1.4 Outline of the Thesis ............................................................................................................... 8 2. Literature Review .....................................................................................................................
    [Show full text]
  • Robotic Process Automation
    Robotic Process Automation by Peter Hofmann1, Caroline Samp2, Nils Urbach3 First Online: 4. November 2019 in: Electronic Markets (2019). https://doi.org/10.1007/s12525-019-00365-8 1 [email protected] 2 [email protected] 3 [email protected] University of Augsburg, D-86135 Augsburg Visitors: Universitätsstr. 12, 86159 Augsburg Phone: +49 821 598-4801 (Fax: -4899) 1022 University of Bayreuth, D-95440 Bayreuth - Visitors: Wittelsbacherring 10, 95444 Bayreuth WI Phone: +49 921 55-4710 (Fax: -844710) www.fim-rc.de Robotic Process Automation Full Title of Article: Robotic Process Automation Subtitle (optional): Preferred Abbreviated Title for Running Robotic Process Automation Head (maximum of 65 characters including spaces) Key Words (for indexing and abstract Robotic Process Automation, Business Process Automation, services – up to 6 words): Software Robots, IS Ecosystems, Back-Office, RPA JEL classification M15 (IT Management) Word Count 5461 <Highlight and Press F9 to update> Word Processing Program Name and Microsoft Windows 2016 Version Number: Abstract: Within digital transformation, which is continuously progressing, robotic process automation (RPA) is drawing much corporate attention. While RPA is a popular topic in the corporate world, the academic research lacks a theoretical and synoptic analysis of RPA. Conducting a literature review and tool analysis, we propose – in a holistic and structured way – four traits that characterize RPA, providing orientation as well as a focus for further research. Software robots automate processes originally performed by human work. Thus, software robots follow a choreography of technological modules and control flow operators while operating within IT ecosystems and using established applications.
    [Show full text]
  • Robot Self-Modeling
    Abstract Robot Self-Modeling Justin Wildrick Hart 2014 Traditionally, models of a robot’s kinematics and sensors have been provided by designers through manual processes. Such models are used for sensorimotor tasks, such as manipulation and stereo vision. However, these techniques often yield static models based on one-time calibrations or ideal engineering drawings; models that often fail to represent the actual hardware, or in which individual unimodal models, such as those describing kinematics and vision, may disagree with each other. Humans, on the other hand, are not so limited. One of the earliest forms of self-knowledge learned during infancy is knowledge of the body and senses. In­ fants learn about their bodies and senses through the experience of using them in conjunction with each other. Inspired by this early form of self-awareness, the re­ search presented in this thesis attempts to enable robots to learn unified models of themselves through data sampled during operation. In the presented experiments, an upper torso humanoid robot, Nico, creates a highly-accurate self-representation through data sampled by its sensors while it operates. The power of this model is demonstrated through a novel robot vision task in which the robot infers the visual perspective representing reflections in a mirror by watching its own motion reflected therein. In order to construct this self-model, the robot first infers the kinematic parame­ ters describing its arm. This is first demonstrated using an external motion capture system, then implemented in the robot’s stereo vision system. In a process inspired by infant development, the robot then mutually refines its kinematic and stereo vi­ 2 sion calibrations, using its kinematic structure as the invariant against which the system is calibrated.
    [Show full text]