Proceedings of the American Academy of Arts and Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conference Series: Earth and Environmental Science 550, Proc
Proceeding ICMA-SURE – 2020 The 3rd International Conference On Multidisciplinary Approaches For Sustainable Rural Development Distinguishing two morphologically similar species of Asteraceae using a chloroplast DNA marker A H Susanto*1 and M Dwiati1 1 Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Indonesia * Email: [email protected] Abstract. Synedrella nodiflora (L.) Gaertn and Calyptocarpus vialis Less are members of Asteraceae family that morphologically show high similarities. To genetically distinguish between them, a particular molecular marker should be employed. This study aims to present molecular comparison between both species using a chloroplast DNA marker, i.e. atpB – rbcL IGS. A pair of PCR universal primers was used to amplify the marker. Sequence alignment on the PCR products reveals longer S. nodiflora sequence in comparison to that of C. vialis. In addition, some transversions and transitions are also observed. This suggests that the two species exhibit considerable genetic difference despite their similar phenotypic appearance. 1. Introduction Many members of Asteraceae family are recognized for their potentials as ornamental, medicinal, and economic plants[1]. On the other hand, some others are known as invasive weeds[2], resulting in significant loss on several crops with respect to productivity[3]. Some species of Asteraceae family show very high phenotypical similarities causing difficulty in differentiating them from each other. For example, Calyptocarpus vialis Less has ever been identified as Synedrella vialis (Less.) A. Gray due to its high resemblance to Synedrella nodiflora[4]. Nevertheless, S. vialis is now changed into C. vialis [5] and this is the scientifically accepted name for the species, while S. -
Josiah Parsons Cooke Jr.: Epistemology in the Service of Science, Pedagogy, and Natural Theology
Josiah Parsons Cooke Jr.: Epistemology in the Service of Science, Pedagogy, and Natural Theology Stephen M. Contakes and Christopher Kyle Abstract: Josiah Parsons Cooke established chemistry education at Harvard University, initiated an atomic weight research program, and broadly impacted American chemical education through his students, the introduction of labo- ratory instruction, textbooks, and influence on Harvard’s admissions require- ments. The devoutly Unitarian Cooke also articulated and defended a biogeo- chemical natural theology, which he defended by arguing for commonalities between the epistemologies of science and religion. Cooke’s pre-Mendeleev classification scheme for the elements and atomic weight research were moti- vated by his interest in numerical order in nature, which reflected his belief in a divine lawgiver. Keywords: Biography, philosophy of education, epistemology of science, natural theology, chemistry and religion. 1. Introduction Today, Harvard University’s Department of Chemistry and Chemical Biol- ogy is among the finest in the world, counting three Nobel laureates and 17 members of the National Academy of Sciences among its 37 faculty (Jacob- son 2010). Its road to this distinction began inauspiciously in 1850 with the appointment of a 23-year old largely self-taught chemist, Josiah Parsons Cooke, as Erving Professor of Chemistry and Mineralogy. Over the interven- ing 44 years, Cooke’s strenuous and fruitful efforts as a teacher, department builder, researcher, and science popularizer significantly advanced chemistry instruction both at Harvard and throughout the Unites States. His efforts were so successful that after his death Harvard President Charles W. Eliot claimed Cooke “created the Chemical and Mineralogical department of Har- vard University” (Eliot 1895, p. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Nov07 NUCLEUS Aa4b
DED UN 18 O 98 F http://www.nesacs.org N Y O T R E I T H C E N O A E S S S L T A E A C R C I N S M S E E H C C TI N O CA February 2009 Vol. LXXXVII, No. 6 N • AMERI Monthly Meeting Professor Wilton L. Virgo of Wellesley College to Speak at Simmons College Tips for Job Seekers By Megan Driscoll Summer Scholar Report Identification of Genes Regulated by Transcriptional Regulator, p8 By Derek Kong This Month in Chemical History By Harold Goldwhite, California State University, Los Angeles February Historical Events in Chemistry by Leopold May, The Catholic University of America, Washington, DC February 1, 1905 methods for the determination of ing and used it against pellagra and Fifty years ago, Emilio Segré shared crystal structures, was born on this pursued the idea that diseases such the Nobel Prize in Physics (1959) day. as beriberi, scurvy, rickets and pella- with Owen Chamberlain for their gra were caused by lack of vital sub- discovery of the antiproton. He co- February 16, 1955 stances in the diet. discovered technetium with C. Per- F. P. Bundy, H. T. Hall, H. M. Strong rier in 1937, and astatine with D. R. and R. H. O. Wentoff announced the February 25, 1880 Corson and R. MacKenzie in 1940, synthesis of diamonds at General Arthur B. Lamb, who was the editor and demonstrated the existence of Electric Research Laboratories on of the Journal of the American the antiproton in 1955. -
Antiproliferative Activity of Allelochemicals Present in Aqueous Extract of Synedrella Nodiflora (L.) Gaertn
Iosr Journal Of Pharmacy E-Issn: 2250-3013, P-Issn: 2319-4219 Www.Iosrphr.Org Volume 3, Issue 2(March 2013), Pp 1-10 Antiproliferative Activity of Allelochemicals Present in Aqueous Extract of Synedrella nodiflora (L.) Gaertn. In Apical Meristems and Wistar Rat Bone Marrow Cells Sanjib Ray*1, Saumabha Chatterjee1 and Chandra Sekhar Chakrabarti1 1Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India. Abstract: Synedrella nodiflora (L.) Gaertn. is a kind of weed with ethno medicinal uses. Here, we aimed to evaluate the antiproliferative activity of AESN (aerial parts aqueous extract of S. nodiflora) in root and shoot apical meristems and WRBMCs (Wistar rat bone marrow cells). The phytotoxic and antiproliferative activities of AESN were evaluated using green-gram seedlings and onion roots. The AESN induced cell cycle delay was analysed by scoring mitotic index, interphase cell frequency, prophase-metaphase and anaphase-telophase cumulative frequency in onion apical meristem cells and by analysing metaphase frequency in WRBMCs. The AESN treatment showed dose dependent root and shoot growth retardation and reduced number of branch root sprouting in green-gram seedlings. Half maximal growth inhibitory concentration (IC50) of AESN was 0.4 mg/ml at 48 h in onion. The mitotic index percentage significantly reduced (44.9 and 62.7% respectively for 0.5 and 2 mg/ml AESN cells at 48 h), interphase and prophase-metaphase cumulative frequency increased and anaphase-telophase cumulative frequency decreased in AESN treated onion root tip cells indicating an overall antiproliferative activity. In WRBMCs, AESN treatment could induce significant (p<0.001) mitodepression (80.6% decreased metaphase frequency with 500 mg/kg body weight for 15 h). -
P1.3 Chemical Genealogy of an Atmospheric Chemist: James N. Pitts, Jr., a Case Study
P1.3 CHEMICAL GENEALOGY OF AN ATMOSPHERIC CHEMIST: JAMES N. PITTS, JR., A CASE STUDY Jeffrey S. Gaffney* and Nancy A. Marley Environmental Research Division Argonne National Laboratory, Argonne, Illinois 1. INTRODUCTION It is indeed a desirable thing to be well descended, but Pitts’ group researched the basic chemistry and the glory belongs to our ancestors. kinetics of gas-phase reactions involved in air pollution - Plutarch (AD 46?-120) and developed methods for studying and detecting these species. As director of the Statewide Air Pollution Plutarch makes an interesting point. It is important to Research Center at the University of California, understand our background and where we came from if Riverside, he led the development of smog chamber we are to really understand the process of creative construction and studies on the fundamental processes effort. Mentoring is a key aspect of atmospheric and production rates of ozone and other oxidants. His chemistry. Our thesis mentors and colleagues have early work focused on singlet-oxygen chemistry, while major influence on us and our research through their his later work addressed the presence and formation of discussions and work during the periods in our careers mutagens in aerosols found in photochemical smog. when we study with them. Here, I explore his mentors and search for links and similar interests in atmospheric chemistry, analytical How far back does this mentoring influence trace? technique development, physical organic chemistry, and Our mentors influence us, but they were impacted by fundamental processes in biological toxicology. their mentors, and so on. Presented here is a chemical genealogy of a well-known atmospheric chemist and mentor (thesis mentor for J. -
THEODORE WILLIAM RICHARDS January 31, 1868-April 2, 1928
NATIONAL ACADEMY OF SCIENCES T H E O D O R E W I L L I A M R ICHARDS 1868—1928 A Biographical Memoir by JAMES BRYANT CONANT Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1974 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODORE WILLIAM RICHARDS January 31, 1868-April 2, 1928 BY JAMES BRYANT CONANT HEODORE WILLIAM RICHARDS was a precocious son of distin- Tguished parents. He was born in Philadelphia on January 31, 1868, the third son and fifth child of William Trost Richards and Anna Matlack Richards, who had been married on June 30, 1856. As strict members of the Society of Friends, the Matlack family looked askance at a young man who earned his living painting pictures. Anna was "read out of meeting." The Quaker marriage ceremony took place in the house of a friend. The first months of the honeymoon were devoted to the com- position and illustration of a manuscript volume of poems for the lady who had first brought the young couple together. A mutual interest in Browning and Tennyson had started an acquaintanceship which rapidly became a romance. An old friend and fellow artist of Philadelphia reminiscing long after W. T. Richards had established his reputation as a landscape painter said, "He amazed me by getting married and resigning his position as designer [in a local firm manufacturing gas fixtures] in order to devote himself entirely to his art. -
Molecular Characteristics of Two Phenotypically Identical Species of Asteraceae Based on the Intergenic Spacer Trnt(UGU)-Trnl(UAA)
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 11, November 2020 E-ISSN: 2085-4722 Pages: 5164-5169 DOI: 10.13057/biodiv/d211122 Molecular characteristics of two phenotypically identical species of Asteraceae based on the intergenic spacer trnT(UGU)-trnL(UAA) AGUS HERY SUSANTO, MURNI DWIATI, SALSABILA PRATIWI Faculty of Biology, Universitas Jenderal Soedirman. Jl. dr. Suparno 63, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. Tel./fax. +62-281-638794, email: [email protected] Manuscript received: 20 June 2020. Revision accepted: 14 October 2020. Abstract. Susanto AH, Dwiati M, Pratiwi S. 2020. Molecular characteristics of two phenotypically identical species of Asteraceae based on the intergenic spacer trnT(UGU)-trnL(UAA). Biodiversitas 21: 5164-5169. Ogiera (Eleutheranthera ruderalis) and nodeweed (Synedrella nodiflora) are two different weed species belonging to the family Asteraceae commonly found in tropical regions. At a glance, both species show highly identical morphology, thus leading to difficulty in distinguishing between them. Therefore, molecular data based on particular markers are required. Here, we use an intergenic spacer (IGS) in the cpDNA, i.e., trnT(UGU)-trnL(UAA), as the molecular marker to reveal the difference between the two species. A pair of PCR universal primers, i.e., B48557 as the forward primer and A49291 as the reverse primer, were employed to amplify the marker. Sequence alignment was performed by the use of ClustalW implemented in Bioedit version 7.0.4.1. The results revealed that some differences with respect to both indel and base substitution were observed. Overall, this led to longer IGS trnT(UGU)-trnL(UAA) sequences of E. -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.