New Mexico Mineral Symposium Abstracts 2002

Total Page:16

File Type:pdf, Size:1020Kb

New Mexico Mineral Symposium Abstracts 2002 Abstracts NEVADA 80 Laramie Cheyenne WYOMING Wendover 76 New Mexico Mineral Symposium Salt Lake City UTAH COLORADO 25 The Twenty-Third Annual New Mexico Min- eral Symposium was held November 9 and 10, 6 Denver 2002, at New Mexico Institute of Mining and 6 Ely 70 Technology, Socorro. Following are abstracts 50 from all talks given at the symposium. 6 Grand Junction 70 4 550 Colorado Springs 24 Pueblo 191 RECOVERY OF THE 17 TON COPPER BOUL- 15 93 DER FROM LAKE SUPERIOR, by Bob Bar- 666 ron, Department of Geological and Mining 5 160 Alamosa Engineering and Sciences, Michigan Tech Uni- Durango 285 versity, 1400 Townsend Dr., Houghton, MI 64 OK 49931, [email protected] ARIZONA NEW MEXICO 87 666 84 Springer For well over a century, the Keweenaw Peninsu- 54 la has served as a home to a multi-billion-dollar 191 copper industry. The roots of mining go back Santa Fe Gallup several thousand years when Native Americans TEXAS 40 Flagstaff 40 first discovered the nearly pure copper and sil- Kingman ver deposited in fissure veins cutting across the 666 Albuquerque Keweenaw Peninsula. Along the sparsely vege- 180 Clovis CA 60 tated shores of Lake Superior and inland lakes 17 54 of the post-glacial period, the Native Americans 60 6 Socorro mined the red metal for possibly 10,000 yrs. The Phoenix 1 380 malleable copper was easily shaped into tools 10 Globe 666 Roswell 180 70 and other valued implements and was traded 25 Silver across North America and perhaps beyond. 70 Alamogordo City As an avid scuba diver and mineral collector 8 Hobbs 3 7 for over 25 yrs, I was drawn to Lake Superior Las Cruces Carlsbad because mineral collecting for fine specimens on Tucson 10 2 the Keweenaw was becoming an activity of the Deming 19 180 20 past. With the closing of many old mines and El Paso the crushing of rock piles, it was becoming TEXAS 285 exceedingly difficult to obtain high-quality Gulf SONORA CHIHUAHUA 10 of 10 specimens. I was spending countless hours sift- California Van Horn ing through old geology maps of the Keweenaw and studying the copper-bearing series along its length when one day it struck me—why not fol- Index map showing the locations referred to in the abstracts. low the fissure veins into Lake Superior and see Geographic Index Map where they cross the offshore shallow reefs? So 23rd New Mexico Mineral Symposium in the summer of 1991, I concentrated my efforts located in the blacksmith and machine shops of road. A hike over relatively flat ground with on a large reef between the old seaports of Eagle the Quincy mine complex, which is slated to arroyos is required to get to the mines. River and Eagle Harbor and realized within a break ground in 2005. The geology of the district was summarized short period of time it was well worth the effort. by Dunham (1935). Hematite is present in dark- During July of 1991, I discovered the largest red botryoidal masses with radiating fibers and piece of fissure vein copper, 30 ft offshore of minor quartz and gypsum. Many of the botry- Great Sand Bay just northeast of Eagle River, HEMATITE COLLECTING IN THE IRON oidal masses are aggregates of rough spheres of Michigan. It measures 19 ft long, 8 ft wide, and HILL DISTRICT, SOUTHWESTERN ROB- hematite that have grown together and often weighs approximately 17 tons. Salvage permits LEDO MOUNTAINS, DOÑA ANA COUN- resemble bunches of small grapes. The rough had to be obtained from the Michigan Depart- TY, NEW MEXICO, by Robert D. Beard, 6259 spheres range in size from less than a millimeter ment of Natural Resources and the U.S. Army to a few centimeters. The botryoidal character is Corps of Engineers before the recovery project South Highlands Circle, Harrisburg, PA 17111 (717) 657-3283 similar to that of manganese oxide deposits near could begin. We had two nylon straps specially Socorro and Deming, but no significant man- made to support the copper and to prevent (Location 7 on the index map) ganese mineralization is apparent in the Iron damage to the natural color during the lift. A The Iron Hill district is located on the west flank Hill district. single 20-ton hydraulic jack was used to lift the of the low hills in the southwestern Robledo The hematite bodies replace sections of Penn- copper high enough to slide the straps under- Mountains in Doña Ana County. The district is sylvanian limestone of the Magdalena series, neath. Then the U.S. Army Corps of Engineers’ approximately 3 mi southwest of Robledo which dip to the southeast approximately 20°. 1 barge and crane were used to lift the boulder Mountain, and is in the NW ⁄4 sec. 16 T22S R1W. The orebodies are lenticular and appear to be from where it had been resting for thousands of The latitude and longitude of the center of the related to fissure zones that cut across the bed- years. district is 32° 23' 51"N, 106° 57' 00"W. Adits and ding of the limestone in various directions. Six- The state-owned boulder now resides in the prospect pits of the Iron Hill district are readily teen bodies of hematite have been opened up, historic Quincy mine 1894 hoist house just north visible on the Leasburg, New Mexico quadran- and many other outcrops have not been of Hancock, Michigan, and will be curated by gle. explored. The dimension of the bodies varies, the A. E. Seaman Mineral Museum. It is the The district is not directly accessible by any from small masses to large bodies as much as largest piece of natural native metal ever recov- roads or trails. It is best reached by taking Inter- 200 ft long, 120 ft wide, and of unknown vertical ered from a body of water and resides on prob- state 10 to Road C 9 and a dirt road that exits extent. Dunham indicated that a moderate ably the largest hydraulic mineral display stand Road C 9 to the north, which parallels the north- resource of iron was available, but the remote- in the world! Hopefully, its final destination will south trend of the Robledo Mountains. The ness of the deposits and their distance to mar- be in the main foyer of the new museum to be mines are approximately 2 mi east of the dirt kets made them uneconomic to mine. November 2002, Volume 24, Number 4 NEW MEXICO GEOLOGY 131 The deposits are reported to be mineralogical- These days the mines of Socorro Peak beckon some geochemical evidence, that the green color ly similar to the hematite deposits of West Cum- to the mineral collector, but access to the mines of smithsonite is due to copper, the yellow to berland and the Forest of Dean, England, which is only possible through the written approval of cadmium, and the blue to cobalt. However, until are known for “kidney ore” hematite. Like these the Energetic Materials Research Test Center now, no one has used modern microchemical deposits in England, the Iron Hill district (EMRTC), an affiliate of the New Mexico Insti- studies to investigate the chromophores in formed in Carboniferous limestones that were tute of Mining and Technology. With the smithsonite. formerly overlain by a great thickness of “red approval of EMRTC, I was able to visit the fol- The Kelly mine sample exhibits strong color bed” deposits. The red beds may have provided lowing Socorro Peak mines in preparation for banding that corresponds to a change in solid hematite cement that leached and subsequently this presentation: May Flower, Socorro (Woods) solution of copper carbonate (CuCO3) in the precipitated into the underlying limestones. Tunnel, Silver Bar, Dewey Load, Merritt, Tor- smithsonite, with higher CuCO3 contents (as Fourteen short tunnels are reported in the rance, and the Maine Tunnel. In most cases, haz- much as 3.0 wt %) occurring in the strongly col- hills, and there are many shallow shafts. The ardous underground conditions, vertical shafts, ored green bands. No mineral inclusions occur dumps are loaded with excellent specimens of and collapsed drifts prevent underground in this sample, and there is little variation of the botryoidal hematite, and collecting is easy once inspection and collecting, but the mine dumps other minor elements present (calcium and you get to the mines. The mines are easily spot- can produce most, if not all, of the minerals of lead). Therefore we believe that copper is the ted on the hillsides because the dumps are a dis- interest to collectors (primarily microminerals). coloring agent in the green smithsonite from the tinct dark red against the outcrops of light-gray Minerals collected during this investigation Kelly mine. limestone. include: mottramite, mimetite, vanadinite, “Cadmian” smithsonite from the Hanover Reference wulfenite, willemite, hemimorphite, bromar- mine contains inclusions of pyrite (FeS2) ~300 Dunham, K. C., 1935, reprinted 1980, The geology gyrite/chlorargyrite, barite, malachite, cerus- µm on a side, iron-rich sphalerite or [(Zn,Fe)S], of the Organ Mountains; part III—the mines and site, chrysocolla, calcite, quartz, and gypsum. and either hexagonal greenockite or isometric mineral resources of Doña Ana County: New Caledonite, descloizite, and linarite (Moats, hawleyite (CdS). The CdS occurs in brightly col- Mexico Bureau of Mines and Mineral Resources, 1991) and argentite/acanthite and fluorite ored bands, which are ~10 µm thick and contain Bulletin 11, pp. 248–249. (Lasky, 1932) have been reported but were not about 17 % of these ~1 µm diameter inclusions. observed. In addition, as much as 19.5 wt % iron carbonate Acknowledgments (FeCO3) is present in solid solution.
Recommended publications
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM\Smithsonite.Wpd
    @oqhk1//0Lhmdq`knesgdLnmsg9Rlhsgrnmhsd We are delighted to present another mineral, beautiful in appearance, significant to modern man and to our ancestors, and whose name honors a man who never saw America, but made a most significant contribution to its national education! OGXRHB@K OQNODQSHDR Chemistry: ZnCo3 Zinc Carbonate Class: Carbonates Dana’s: Anhydrous Carbonates Crystal System: Hexagonal-Trigonal Crystal Habits: Crystals are rare, usually as rhombohedrons, often curved and rough, or more rarely, as scalenohedrons; Usually as crusts; Botryoidal, stalactitic, reniform; Massive, granular, earthy Color: Grayish white to dark gray, greenish or brownish white, also green to apple-green, blue, green- blue, yellow, pink, brown, or white; rarely, colorless and transparent Luster: Greasy to vitreous Transparency: Transparent to translucent Streak: White Refractive Index: 1.848, 1.621 Cleavage: Perfect in one direction Fracture: Uneven to conchoidal; brittle Hardness: 4.5 Specific Gravity: 4.2 Luminescence: Often fluoresces white, vivid blue, pink, red, yellow, and orange under shortwave and longwave ultraviolet light Distinctive Features and Tests: Specific gravity and hardness higher than other carbonates; Infusible Dana Classification Number: 14.1.1.6 M @L D Our featured mineral is pronounced smith!-sun-t, and was named in 1832 in honor of British mineralogist and chemist James Smithson (1765-1829), whose legacy provided for the foundation of the Smithsonian Institute, and who did much research into zinc and zinc minerals. See History and Lore for more information on the man and the institution. BNL ONRHSHNM Smithsonite is the sixth member of the carbonates class to be our featured mineral, after azurite (September 1996), calcite (November 1996), rhodochrosite (October 1997), aragonite (June 2000) and dolomite (January 2001).
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • (Mnco3-Znco3) Solid-Solutions at 5~
    The formation of rhodochrosite-smithsonite (MnCO3-ZnCO3) solid-solutions at 5~ MICHAEL E. BOTTCHER* Geochemical Institute, Georg-August-University, Goldschmidtstr.1, D-37077 G6ttingen, Germany Abstract MnxZn(l_x)CO3 solid-solutions were prepared at 5~ by precipitation from metal-beating bicarbonate solutions. The solids were identified by X-ray powder diffraction and infrared spectroscopy. Zn2+ ions substitute extensively for Mn2+ ions in the crystal lattice of anhydrous rhombohedral carbonates. Throughout the 24 h during which the experiments were conducted, the aqueous solutions remained undersaturated with respect to pure oxides, sulphates, hydroxides and hydroxysulphates. The solutions, however, were supersaturated with MnxZno_x)CO3 of any given composition. Besides the anhydrous rhombohedral carbonates, Zn4(OH)2(CO3)3.4H20 was precipitated from an aqueous solution with initially high Zn2+ concentration. The negative logarithm of the solubility product of Zn4(OH)2(CO3)3.4H20 was estimated theoretically to be 43.9 (25~ Remaining saturation with respect to Zn4(OH)z(CO3)3-4H20 was calculated accordingly. The suggestion is made that hydrated zinc hydroxycarbonate is metastable under the experimental conditions used here, but that it should transform into anhydrous carbonates. KEYwoems: rhodochrosite, smithsonite, solid-solutions, zinc hydroxycarbonate, synthesis. Introduction quantitative significance has probably previously been underestimated. However, although B6ttcher A nearly complete natural rhodochrosite-smithsonite et al. (1993) applied a tentative thermodynamic (MnCO3-ZnCO3) solid-solution series has been model to estimate the metal-activity ratios of the found in the oxidized zone of the ore body at aqueous solutions from which the Broken Hill Broken Hill, N.S.W., Australia (Birch, 1986; carbonates were precipitated, less is known on the B6ttcher et al., 1993; B6ttcher et al., in prep.).
    [Show full text]
  • Geology and Mineralogy of the Ape.X Washington County, Utah
    Geology and Mineralogy of the Ape.x Germanium-Gallium Mine, Washington County, Utah Geology and Mineralogy of the Apex Germanium-Gallium Mine, Washington County, Utah By LAWRENCE R. BERNSTEIN U.S. GEOLOGICAL SURVEY BULLETIN 1577 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1986 For sale by the Distribution Branch, Text Products Section U.S. Geological Survey 604 South Pickett St. Alexandria, VA 22304 Library of Congress Cataloging-in-Publication Data Bernstein, Lawrence R. Geology and mineralogy of the Apex Germanium­ Gallium mine, Washington County, Utah (U.S. Geological Survey Bulletin 1577) Bibliography: p. 9 Supt. of Docs. no.: I 19.3:1577 1. Mines and mineral resources-Utah-Washington County. 2. Mineralogy-Utah-Washington County. 3. Geology-Utah-Wasington County. I. Title. II. Series: United States. Geological Survey. Bulletin 1577. QE75.B9 no. 1577 557.3 s 85-600355 [TN24. U8] [553' .09792'48] CONTENTS Abstract 1 Introduction 1 Germanium and gallium 1 Apex Mine 1 Acknowledgments 3 Methods 3 Geologic setting 3 Regional geology 3 Local geology 3 Ore geology 4 Mineralogy 5 Primary ore 5 Supergene ore 5 Discussion and conclusions 7 Primary ore deposition 7. Supergene alteration 8 Implications 8 References 8 FIGURES 1. Map showing location of Apex Mine and generalized geology of surrounding region 2 2. Photograph showing main adit of Apex Mine and gently dipping beds of the Callville Limestone 3 3. Geologic map showing locations of Apex and Paymaster mines and Apex fault zone 4 4. Scanning electron photomicrograph showing plumbian jarosite crystals from the 1,601-m level, Apex Mine 6 TABLES 1.
    [Show full text]
  • The Structure of Hemimorphite
    Zeitschrift fUr Kristallographie, Bd. 113, S. 23-29 (1960) The structure of hemimorphite By G. A. BAHCLAY and E. G. Cox Department of Inorganic and Structural Chemistry University of Leeds With 1 figure (Received June 16, 1959) Auszug Die Struktur von Kieselzinkerz, Zn4Si207(OH)2. H20, wurde auf Grund von hkO- und Okl-Projektionen der Elektronendichte neu bestimmt. Das SiP7-Ion besteht aus zwei Si04-Tetraedern mit einem gemeinsamen Sauerstoff- atom; der Si-O-Si-Winkel ist 133°, der Si-O-Abstand vom gemeinsamen O-Atom 1,72 A; die ubrigen Si-O-Abstande sind 1,60 und 1,62 A. Nach vorlaufigen Ergebnissen einer gemeinsam mit H. LYNTON angestellten Untersuchung hat der Thortveitit, Sc2Si207, nicht die Symmetrie 21m und ist cler Winkel Si-O-Si entgegen fruheren Annahmen kein rechter. Abstract The structure of hemimorphite, Zn4(OH)2Si207 . H20, has been redetermined by means of hkO and Okl electron-density projections. The Si207 ion consists of two Si04 tetrahedra with a shared corner; the Si-O-Si angle is 133° and the Si-O distances are 1.72 A (central) and 1.60, 1.62 A (peripheral). Preliminary results for thortveitite, Sc2Si207, (with H. LYNTON) show that the crystals do not have 21m symmetry and that the Si-O-Si angle is not 1800 as formerly supposed. Introduction Earlier investigations of hemimorphite, Zn4(OH)2Si207. H20 (ITo and WEST, 1932), and thortveitite, Sc2Si207 (ZACHARIASEN, 1930), in- dicated linear Si-O-Si bonds in the pyrosilicate groups. On the other hand in the melilites (WARREN, 1930; WARREN and TRAUTZ, 1931), lawsonite (WICKMAN, 1947), tilleyite (SMITH, 1953) and epidote (ITO, MORIMOTOand SADANAGA,1954) the reported Si-O-Si angles range from 131 ° to 165 0; moreover in X207 groups of other kinds the X-O-X angle is usually considerably less than 180°.
    [Show full text]
  • The Mineralogy of Warsaw Formation Geodes
    Proceedings of the Iowa Academy of Science Volume 66 Annual Issue Article 47 1959 The Mineralogy of Warsaw Formation Geodes Richard B. Tripp U.S. Geological Survey Let us know how access to this document benefits ouy Copyright ©1959 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Tripp, Richard B. (1959) "The Mineralogy of Warsaw Formation Geodes," Proceedings of the Iowa Academy of Science, 66(1), 350-356. Available at: https://scholarworks.uni.edu/pias/vol66/iss1/47 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Tripp: The Mineralogy of Warsaw Formation Geodes The Mineralogy of Warsaw Formation Geodes By RICHARD B. TRIPP Abstract. Mineral inclusions found in geodes from the Warsaw formation of southeastern Iowa are described. The following are reported as present: quartz, chalcedony, calcite, dolomite, ankerite, barite, aragonite, smithsonite, iron pyrite, marcasite, chalcopyrite, sphalerite, sulfur, goethite, hematite, pyrolusite, kaolinite, malachite, selenite, and limonite. Tenorite and chalcocite have been tentatively identified. The geodes found in the Warsaw formation of southeastern Iowa and adjacent areas present a number of interesting mineralogical in­ clusions, many not previously described in the literature. For the past ten years an intensive study has been made of the mineral inclu­ sions found in geodes collected from thirty-two different exposures in the Keokuk, Iowa, area.
    [Show full text]
  • Nature's Art: Geodes from the Collection of Robert R. Wiener
    Nature’s Art: Geodes from the Collection of Robert R. Wiener The Rye Arts Center Spring - Summer 2021 Curated by Gail Harrison Roman, PhD A Tribute to Robert R. Wiener The Rye Arts Center extends its gratitude and love to Bob Wiener: Humanitarian, Connoisseur, Collector, Scholar, Educator, Cherished Friend Front cover: Vanadite, Morocco Back cover: Malachite, Congo 1 NATURE’S ART: GEODES FROM THE COLLECTION OF ROBERT R. WIENER Guiding Light of The Rye Arts Center Robert R. Wiener exemplifies the Mission of The Rye Arts Center. He is a supporter of cultural endeavors for all and a staunch believer in extending the educational value of the arts to underserved populations. His largesse currently extends to the Center by his sharing geodes with us. This is the latest chapter of his enduring support that began thirty-five years ago. Bob is responsible for saving 51 Milton Road by spearheading in 1986 the movement to prevent the city’s demolition of our home. He then led the effort to renovate the building that we now occupy. As a member of the RAC Board in the 1980s and 1990s, Bob helped guide the Center through its early years of expansion and success. His efforts have enabled RAC to become a beacon of the arts for the local community and beyond it. Bob has joined with RAC to place cases of his geodes in area schools, where they attract excited attention from children and adults alike. Bob’s maxim is “The purpose of life is to give back.” Led and inspired by Bob, The Wiener Family Philanthropy supports dozens of organizations devoted to the arts, community initiatives, education, health care, and positive youth empowerment.
    [Show full text]
  • Example of Ore Characterization by the Use of Automated Mineralogical Analyses Using Mineralogic Mining (ZEISS) Technology: Results on the Hakkari Samples (Turkey)
    ©2016 Society of Economic Geologists, Inc. SEG-MJD 2016 Conference Example of Ore Characterization by the Use of Automated Mineralogical Analyses Using Mineralogic Mining (ZEISS) Technology: Results on the Hakkari Samples (Turkey) Licia Santoro,1,* Richard Herrington,1 and Maria Boni2 1Natural History Museum, Earth Sciences Department, Cromwell Rd, SW7 5BD London, UK 2Dipartimento Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy *Corresponding author: e-mail, [email protected] The Hakkari Zinc Project is a supergene nonsulfide Zn>>Pb deposit located in the southeast of Turkey. Total resources estimated consist of 10 Mt at 15% Zn. The ore concentrations mainly consist of oxidized Zn minerals (smithsonite and hemimorphite) derived from the weathering of sulfides, hosted in shallow-water Jurassic limestone. This preliminary study is focused on the mineralogical and petrographic characterization of four Hakkari samples in terms of quantitative modal mineralogy and average mineral association. The four samples were taken from different oxidation zones representative of the deposit, in order to characterize and quantify all the occurring mineral phases. The analyses were carried out using a new generation of automated mineralogical analysis systems known as “Mineralogic Mining” (ZEISS), which utilizes modern quantitative EDS technology to allow minerals to be classified based on the % element abundance (stoichiometry). Previous QEMSCAN (FEI) analyses for the same four samples of the Hakkari mineralization provided a strong basis for the Mineralogic routine, and were used to assess the accuracy and the capabilities of the Mineralogic system. Mineralogic Mining was able to build high-resolution maps and to clearly identify and quantify the major economic phases, such as smithsonite and hemimorphite (up to ~58 and ~67 wt %, respectively, in the analyzed samples), and gangue phases such as goethite (up to 38 wt %).
    [Show full text]
  • Physicochemical Studies of Oxide Zinc Mineral Flotation Mineral Zinc Oxide of Physicochemicalstudies
    2008:17 DOCTORAL T H E SIS Seyed Hamid Hosseini Seyed Physicochemical Studies of Oxide Zinc Mineral Flotation Physicochemical Studies Physicochemical of Oxide Zinc Mineral Flotation Seyed Hamid Hosseini Luleå University of Technology Department of Chemical Engineering and Geosciences 2008:17 Division of Mineral Processing Universitetstryckeriet, Luleå 2008:17|: 102-1544|: - -- 08⁄17 -- DOCTORAL THESIS Physicochemical Studies of Oxide Zinc Mineral Flotation Seyed Hamid Hosseini Division of Mineral Processing Department of Chemical Engineering and Geosciences Luleå University of Technology March 2008 To My Wife & My Son Abstract At the present, zinc is produced mostly from zinc sulphide ores because the sulphides are easy to separate from the gangue by conventional flotation techniques. In the case of oxide zinc ores, there is often no selectivity in terms of zinc recovery. The objective of the present study is to investigate the influence of different cationic, anionic and mixed collectors on the flotation of smithsonite mineral and an oxide zinc ore at various concentrations and pH values. The present thesis consists of three parts: i) characterization of smithsonite mineral and oxide zinc ore from the Angooran ore deposit, Iran, ii) physicochemical studies on smithsonite sample including zeta-potential, contact angle, microflotation tests and adsorption studies using diffuse reflectance FTIR (DRIFT) and X-ray photoelectron spectroscopy (XPS) techniques in the presence of cationic, anionic and mixed collectors (cationic/anionic) and iii) flotation behavior of oxide zinc ore from the Angooran ore in the presence of cationic, anionic and mixed collectors. The results of XPS and EDX on ore samples in different size fractions showed no significant variations in zinc percentage on bulk and surface of samples.
    [Show full text]
  • Solubility of Hemimorphite in Ammonium Sulfate Solution at 25 °C
    Trans. Nonferrous Met. Soc. China 23(2013) 2160−2165 Solubility of hemimorphite in ammonium sulfate solution at 25 °C Qin-xiang LI, Hui-ping HU, De-wen ZENG, Qi-yuan CHEN School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China Received 7 September 2012; accepted 20 November 2012 Abstract: The solubility of natural hemimorphite in ammonium sulfate solution was measured by isothermal solution method at 25 °C and the dissolved residue of hemimorphite was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) methods. The results show that zinc and silica in hemimorphite simultaneously dissolve in ammonium sulfate solution. The solubility of zinc in solution increases rapidly from 4.5381 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 11.5083 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The solubility of silica in solution increases slowly from 2.5509 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 7.2891 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The dissolved residue is the characteristic of hemimorphite Zn4Si2O7(OH)2·H2O based on the results of the XRD, SEM and FTIR. Thus, no phase transition occurs in the dissolution process of hemimorphite in ammonium sulfate solution. Key words: hemimorphite; ammonium sulfate; silicic acid; solubility published as “the Schnabel Process” in 1880, which 1 Introduction pre-dated the better-known applications of ammoniacal leaching to copper and nickel by 30 years or more [3]. As the primary source of zinc, oxidized zinc ores Extensive works have studied on the application to a are the main source of zinc metal after nature sulfide ores specific feedstock, mainly non-silica minerals such as are steadily getting depleted.
    [Show full text]