The Blue Wing Mining District Is in the Northern Part of the Bannack Area (Pl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
C:\Documents and Settings\Alan Smithee\My Documents\MOTM\Smithsonite.Wpd
@oqhk1//0Lhmdq`knesgdLnmsg9Rlhsgrnmhsd We are delighted to present another mineral, beautiful in appearance, significant to modern man and to our ancestors, and whose name honors a man who never saw America, but made a most significant contribution to its national education! OGXRHB@K OQNODQSHDR Chemistry: ZnCo3 Zinc Carbonate Class: Carbonates Dana’s: Anhydrous Carbonates Crystal System: Hexagonal-Trigonal Crystal Habits: Crystals are rare, usually as rhombohedrons, often curved and rough, or more rarely, as scalenohedrons; Usually as crusts; Botryoidal, stalactitic, reniform; Massive, granular, earthy Color: Grayish white to dark gray, greenish or brownish white, also green to apple-green, blue, green- blue, yellow, pink, brown, or white; rarely, colorless and transparent Luster: Greasy to vitreous Transparency: Transparent to translucent Streak: White Refractive Index: 1.848, 1.621 Cleavage: Perfect in one direction Fracture: Uneven to conchoidal; brittle Hardness: 4.5 Specific Gravity: 4.2 Luminescence: Often fluoresces white, vivid blue, pink, red, yellow, and orange under shortwave and longwave ultraviolet light Distinctive Features and Tests: Specific gravity and hardness higher than other carbonates; Infusible Dana Classification Number: 14.1.1.6 M @L D Our featured mineral is pronounced smith!-sun-t, and was named in 1832 in honor of British mineralogist and chemist James Smithson (1765-1829), whose legacy provided for the foundation of the Smithsonian Institute, and who did much research into zinc and zinc minerals. See History and Lore for more information on the man and the institution. BNL ONRHSHNM Smithsonite is the sixth member of the carbonates class to be our featured mineral, after azurite (September 1996), calcite (November 1996), rhodochrosite (October 1997), aragonite (June 2000) and dolomite (January 2001). -
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Crystal Chemistry of Wulfenite (Pbmoo4) and Wolframite (Fe,Mn)WO4 Author Information – Darren A
Crystal Chemistry of Wulfenite (PbMoO4) and Wolframite (Fe,Mn)WO4 Author information – Darren A. Umbsaar Affiliation – University of Calgary Summary In this study, the crystal structure and chemistry of a selection of wulfenite (PbMoO4) and wolframite ((Fe,Mn)WO4) samples from various worldwide localities are examined. These 2+ minerals have the same general formula, ABO4, where A is a divalent metal cation (e.g. Mn , Fe2+, Pb2+, etc.) and B is a highly charged cation (W6+ or Mo6+). These minerals crystallize in two different space groups; (1) wulfenite crystallizes in the tetragonal scheelite-type structure (space group I41/a, formula units, Z, = 4), whereas (2) wolframite crystallizes in the monoclinic wolframite- type structure (space group P2/c, Z = 2). The space group symmetry and cell dimensions are largely dictated by the ionic radius of the A site cation. In general, when the A cation radius is >0.90Å the crystal will form the tetragonal scheelite-type structure, whereas an A cation radius <0.90Å will favor the monoclinic wolframite-type structure. X-ray diffraction analyses of these minerals have long been a challenge because they are composed of heavy atoms (Pb, Mo, and W) which dominate in scattering X-rays. This makes it challenging to precisely determine the atomic coordinates of oxygen, being a much lighter element with a weaker atomic scattering power. Therefore, in an effort to overcome the aforementioned obstacle, and to acquire accurate structural data for these minerals, this study uses synchrotron high resolution powder X-ray diffraction (HRPXRD). The natural wulfenite specimens analyzed so far in this study from various worldwide localities are very pure in composition, with all specimens being represented by the formula: Pb0.99- 5+ 6+ 6+ 6+ 1.00Mo0.99-1.00O4. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Chemistry of Formation of Lanarkite, Pb2oso 4
SHORT COMMUNICATIONS MINERALOGICAL MAGAZINE, DECEMBER 1982, VOL. 46, PP. 499-501 Chemistry of formation of lanarkite, Pb2OSO 4 W E have recently reported (Humphreys et al., 1980; sion which is at odds with the widespread occur- Abdul-Samad et al., 1982) the free energies of rence of the simple sulphate and the extreme rarity formation of a variety of chloride-bearing minerals of the basic salt, and with aqueous synthetic of Pb(II) and Cu(II) together with carbonate procedures for the preparation of the compound and sulphate species of the same metals includ- (Bode and Voss, 1959), which involve reaction of ing leadhillite, Pb,SO4(COa)2(OH)2, caledonite, angtesite in basic solution. PbsCu2CO3(SO4)3(OH)6, and linarite, (Pb,Cu)2 Kellog and Basu (1960) also determined AG~ for SO4(OH)2. By using suitable phase diagrams it has Pb2OSOa(s) at 298.16 K using the method of proved possible to reconstruct, in part, the chemical univariant equilibria in the system Pb-S-O. They history of the development of some complex obtained a value of -1016.4 kJ mol-1 based on secondary mineral assemblages such as those at literature values for PbO(s), PbS(s), PbSO4(s), and the Mammoth-St. Anthony mine, Tiger, Arizona, SO2(g) and another of - 1019.8 kJ mol- 1 based on and the halide and carbonate suite of the Mendip adjusted values for the above compounds. These Hills, Somerset. two results, for which the error was estimated to A celebrated locality for the three sulphate- be about 4.5 kJ mol-1, seem to be considerably bearing minerals above is the Leadhills-Wanlock- more compatible with observed associations than head district of Scotland (Wilson, 1921; Heddle, the earlier values. -
Barite (Barium)
Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 -
Mottramite Pbcu(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
Mottramite PbCu(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or dipyramidal {111}, prismatic [001] or [100], with {101}, {201}, many others, to 3 mm, in drusy crusts, botryoidal, usually granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼5.9 D(calc.) = 6.187 Optical Properties: Transparent to nearly opaque. Color: Grass-green, olive-green, yellow- green, siskin-green, blackish brown, nearly black. Streak: Yellowish green. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.17(2) β = 2.26(2) γ = 2.32(2) 2V(meas.) = ∼73◦ Cell Data: Space Group: P nma. a = 7.667–7.730 b = 6.034–6.067 c = 9.278–9.332 Z=4 X-ray Powder Pattern: Mottram St. Andrew, England; close to descloizite. 3.24 (vvs), 5.07 (vs), 2.87 (vs), 2.68 (vs), 2.66 (vs), 2.59 (vs), 1.648 (vs) Chemistry: (1) (2) (1) (2) CrO3 0.50 ZnO 0.31 10.08 P2O5 0.24 PbO 55.64 55.30 As2O5 1.33 H2O 3.57 2.23 V2O5 21.21 22.53 insol. 0.17 CuO 17.05 9.86 Total 100.02 100.00 (1) Bisbee, Arizona, USA; average of three analyses. (2) Pb(Cu, Zn)(VO4)(OH) with Zn:Cu = 1:1. -
Barite Baso4 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
Barite BaSO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Commonly in well-formed crystals, to 85 cm, with over 70 forms noted. Thin to thick tabular {001}, {210}, {101}, {011}; also prismatic along [001], [100], or [010], equant. As crested to rosettelike aggregates of tabular individuals, concretionary, fibrous, nodular, stalactitic, may be banded; granular, earthy, massive. Physical Properties: Cleavage: {001}, perfect; {210}, less perfect; {010}, imperfect. Fracture: Uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = 4.50 D(calc.) = 4.47 May be thermoluminescent, may fluoresce and phosphoresce cream to spectral colors under UV. Optical Properties: Transparent to translucent. Color: Colorless, white, yellow, brown, gray, pale shades of red, green, blue, may be zoned, or change color on exposure to light; colorless or faintly tinted in transmitted light. Streak: White. Luster: Vitreous to resinous, may be pearly. Optical Class: Biaxial (+). Pleochroism: Weak. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,weak. Absorption: Z > Y > X. α = 1.636 β = 1.637 γ = 1.648 2V(meas.) = 36◦–40◦ Cell Data: Space Group: P nma. a = 8.884(2) b = 5.457(3) c = 7.157(2) Z = 4 X-ray Powder Pattern: Synthetic. 3.445 (100), 3.103 (95), 2.121 (80), 2.106 (75), 3.319 (70), 3.899 (50), 2.836 (50) Chemistry: (1) (2) SO3 34.21 34.30 CaO 0.05 BaO 65.35 65.70 Total 99.61 100.00 (1) Sv´arov, Czech Republic. (2) BaSO4. Polymorphism & Series: Forms a series with celestine. -
Ramsbeckite (Cu, Zn)15(SO4)4(OH)22 • 6H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic, Pseudohexagonal
Ramsbeckite (Cu, Zn)15(SO4)4(OH)22 • 6H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudohexagonal. Point Group: 2/m. Crystals are tabular with large {001}, also {210}, {110}, {100}, giving a slightly rounded rhombic outline, to 3 mm. Twinning: Observed, repeated, forming cylindrical aggregates. Physical Properties: Cleavage: On {001}, perfect. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 3.5 D(meas.) = 3.39–3.41 D(calc.) = 3.37 Optical Properties: Transparent to translucent. Color: Green, blue-green. Streak: Pale green. Luster: Vitreous. Optical Class: Biaxial (–). Pleochroism: Weak; X = pale blue-green, emerald-green; Y = Z = blue-green, yellow-green. Orientation: Y = b; X ∧ c =5◦; Z ∧ a =5◦. Absorption: X > Y = Z. α = 1.624–1.669 β = 1.674–1.703 γ = 1.678–1.707 2V(meas.) = 36◦–38◦ 2V(calc.) = 38.0◦ Cell Data: Space Group: P 21/a. a = 16.088–16.110 b = 15.576–15.602 c = 7.102–7.112 β =90.0◦−90.27◦ Z=2 X-ray Powder Pattern: Bastenberg mine, Ramsbeck, Germany. 7.090 (100), 3.549 (25), 1.776 (20), 3.254 (13), 4.400 (12), 3.232 (12), 3.244 (11) Chemistry: (1) (2) (3) SO3 17.4 17.6 17.51 CuO 44.5 43.8 43.49 ZnO 15.8 18.1 22.25 H2O 19.3 [20.5] 16.75 Total 97.0 [100.0] 100.00 (1) Bastenberg mine, Ramsbeck, Germany; SO4 by photometry, CuO, ZnO by AA, H2O by gas 1− chromatography, (OH) computed for charge balance; corresponds to (Cu10.30Zn3.58)Σ=13.88 • (SO4)4.00(OH)19.76 9.84H2O. -
Macphersonite Pb4(SO4)(CO3)2(OH)2 C 2001-2005 Mineral Data Publishing, Version 1
Macphersonite Pb4(SO4)(CO3)2(OH)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic, pseudohexagonal. Point Group: 2/m 2/m 2/m. Crystals are commonly pseudohexagonal, thin to tabular on {010}, to 1 cm. Twinning: Common, lamellar and contact, composition plane {102}. Physical Properties: Cleavage: On {010}, perfect. Fracture: Uneven. Hardness = 2.5–3 D(meas.) = 6.50–6.55 D(calc.) = 6.60–6.65 May exhibit a bright yellow fluorescence under SW and LW UV. Optical Properties: Semitransparent. Color: Colorless, white, very pale amber. Luster: Adamantine to resinous. Optical Class: Biaxial (–). Orientation: X = b; Y = c; Z = a. Dispersion: r> v,moderate. α = 1.87 β = 2.00 γ = 2.01 2V(meas.) = 35◦–36◦ Cell Data: Space Group: P cab. a = 10.383(2) b = 23.050(5) c = 9.242(2) Z = 8 X-ray Powder Pattern: Argentolle mine, France; may show preferred orientation. 3.234 (100), 2.654 (90), 3.274 (50), 2.598 (30), 2.310 (30), 2.182 (30), 2.033 (30) Chemistry: (1) (2) (3) SO3 6.6 7.65 7.42 CO2 8.8 8.47 8.16 CuO 0.1 CdO 0.1 PbO 83.4 83.59 82.75 + H2O 1.3 1.93 1.67 Total 100.3 101.64 100.00 (1) Leadhills, Scotland; by electron microprobe, average of ten analyses, CO2 by evolved gas analysis, H2O by TGA; corresponds to (Pb4.08Cu0.10Cd0.07)Σ=4.25(S0.90O4)(C1.09O3)2(OH)1.58. (2) Argentolle mine, France; corresponds to Pb4.06(S1.03O4)(C1.04O3)2(OH)2.32. -
(Mnco3-Znco3) Solid-Solutions at 5~
The formation of rhodochrosite-smithsonite (MnCO3-ZnCO3) solid-solutions at 5~ MICHAEL E. BOTTCHER* Geochemical Institute, Georg-August-University, Goldschmidtstr.1, D-37077 G6ttingen, Germany Abstract MnxZn(l_x)CO3 solid-solutions were prepared at 5~ by precipitation from metal-beating bicarbonate solutions. The solids were identified by X-ray powder diffraction and infrared spectroscopy. Zn2+ ions substitute extensively for Mn2+ ions in the crystal lattice of anhydrous rhombohedral carbonates. Throughout the 24 h during which the experiments were conducted, the aqueous solutions remained undersaturated with respect to pure oxides, sulphates, hydroxides and hydroxysulphates. The solutions, however, were supersaturated with MnxZno_x)CO3 of any given composition. Besides the anhydrous rhombohedral carbonates, Zn4(OH)2(CO3)3.4H20 was precipitated from an aqueous solution with initially high Zn2+ concentration. The negative logarithm of the solubility product of Zn4(OH)2(CO3)3.4H20 was estimated theoretically to be 43.9 (25~ Remaining saturation with respect to Zn4(OH)z(CO3)3-4H20 was calculated accordingly. The suggestion is made that hydrated zinc hydroxycarbonate is metastable under the experimental conditions used here, but that it should transform into anhydrous carbonates. KEYwoems: rhodochrosite, smithsonite, solid-solutions, zinc hydroxycarbonate, synthesis. Introduction quantitative significance has probably previously been underestimated. However, although B6ttcher A nearly complete natural rhodochrosite-smithsonite et al. (1993) applied a tentative thermodynamic (MnCO3-ZnCO3) solid-solution series has been model to estimate the metal-activity ratios of the found in the oxidized zone of the ore body at aqueous solutions from which the Broken Hill Broken Hill, N.S.W., Australia (Birch, 1986; carbonates were precipitated, less is known on the B6ttcher et al., 1993; B6ttcher et al., in prep.).