pharmaceutics Review Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications Bryce J. B. Nelson 1, Jan D. Andersson 1,2 and Frank Wuest 1,* 1 Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada;
[email protected] (B.J.B.N.);
[email protected] (J.D.A.) 2 Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada * Correspondence:
[email protected]; Tel.: +1-780-391-7666; Fax: +1-780-432-8483 Abstract: This review outlines the accomplishments and potential developments of targeted alpha (α) particle therapy (TAT). It discusses the therapeutic advantages of the short and highly ionizing path of α-particle emissions; the ability of TAT to complement and provide superior efficacy over existing forms of radiotherapy; the physical decay properties and radiochemistry of common α-emitters, including 225Ac, 213Bi, 224Ra, 212Pb, 227Th, 223Ra, 211At, and 149Tb; the production techniques and proper handling of α-emitters in a radiopharmacy; recent preclinical developments; ongoing and completed clinical trials; and an outlook on the future of TAT. Keywords: targeted alpha therapy; alpha particle therapy; targeted radionuclide therapy; theranos- tics; actinium-225; bismuth-213; astatine-211; radium-223; thorium-227; terbium-149 1. Introduction Radionuclide therapy has been employed frequently in the past several decades Citation: Nelson, B.J.B.; Andersson, for disease control, curative therapy, and pain management applications [1]. Targeted J.D.; Wuest, F. Targeted Alpha radionuclide therapy (TRT) is advantageous as it delivers a highly concentrated dose to a Therapy: Progress in Radionuclide tumor site—either directly to the tumor cells or to its microenvironment—while sparing Production, Radiochemistry, and the healthy surrounding tissues.