Target Tracking During Venom 'Spitting' by Cobras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Equatorial Spitting Cobra) Venom a P
The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 4 | pages 451-459 Biochemical and toxinological characterization of Naja sumatrana ER P (Equatorial spitting cobra) venom A P Yap MKK (1), Tan NH (1), Fung SY (1) RIGINAL O (1) Department of Molecular Medicine, Center for Natural Products and Drug Research (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. Abstract: The lethal and enzymatic activities of venom from Naja sumatrana (Equatorial spitting cobra) were determined and compared to venoms from three other Southeast Asian cobras (Naja sputatrix, Naja siamensis and Naja kaouthia). All four venoms exhibited the common characteristic enzymatic activities of Asiatic cobra venoms: low protease, phosphodiesterase, alkaline phosphomonoesterase and L-amino acid oxidase activities, moderately high acetylcholinesterase and hyaluronidase activities and high phospholipase A2. Fractionation of N. sumatrana venom by Resource® S cation exchange chromatography (GE Healthcare, USA) yielded nine major protein peaks, with all except the acidic protein peak being lethal to mice. Most of the protein peaks exhibit enzymatic activities, and L-amino acid oxidase, alkaline phosphomonoesterase, acetylcholinesterase, 5’-nucleotidase and hyaluronidase exist in multiple forms. Comparison of the Resource® S chromatograms of the four cobra venoms clearly indicates that the protein composition of N. sumatrana venom is distinct from venoms of the other two spitting cobras, N. sputatrix (Javan spitting cobra) and N. siamensis (Indochinese spitting cobra). The results support the revised systematics of the Asiatic cobra based on multivariate analysis of morphological characters. The three spitting cobra venoms exhibit two common features: the presence of basic, potentially pharmacologically active phospholipases A2 and a high content of polypeptide cardiotoxin, suggesting that the pathophysiological actions of the three spitting cobra venoms may be similar. -
Human Mast Cell Tryptase Is a Potential Treatment for Snakebite
ORIGINAL RESEARCH published: 09 July 2018 doi: 10.3389/fimmu.2018.01532 Human Mast Cell Tryptase Is a Potential Treatment for Snakebite Edited by: Envenoming Across Multiple Snake Ulrich Blank, Institut National de la Santé Species et de la Recherche Médicale (INSERM), France Elizabeth Anderson1†, Kathrin Stavenhagen 2†, Daniel Kolarich 2†, Christian P. Sommerhoff 3, Reviewed by: Marcus Maurer 1 and Martin Metz 1* Nicolas Gaudenzio, Institut National de la Santé 1 Department of Dermatology and Allergy, Charité – Universitätsmedizin Berlin, Berlin, Germany, 2 Department of Biomolecular et de la Recherche Médicale Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany, 3 Institute of Laboratory Medicine, University (INSERM), France Hospital, Ludwig-Maximilians-University, Munich, Germany Axel Lorentz, University of Hohenheim, Germany Snake envenoming is a serious and neglected public health crisis that is responsible *Correspondence: for as many as 125,000 deaths per year, which is one of the reasons the World Health Martin Metz Organization has recently reinstated snakebite envenoming to its list of category A [email protected] neglected tropical diseases. Here, we investigated the ability of human mast cell prote- †Present address: Elizabeth Anderson, ases to detoxify six venoms from a spectrum of phylogenetically distinct snakes. To this School of Medicine, UC end, we developed a zebrafish model to assess effects on the toxicity of the venoms San Diego, San Diego, CA, United States; and characterized the degradation of venom proteins by mass spectrometry. All snake Kathrin Stavenhagen, venoms tested were detoxified by degradation of various venom proteins by the mast Department of Surgery, cell protease tryptase , and not by other proteases. -
Records of the Hawaii Biological Survey for 1996
Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J. -
Occasional Papers
NUMBER 120, 17 pages 25 May 2017 BISHOP MUSEUM OCCASIONAL PAPERS THE SPIDERS OF RAPA NUI (E ASTER ISLAND ) R EVISITED DARKO D. C OTORAS , J. J UDSON WYNNE , LUIS FLORES -P RADO & C RISTIAN VILLAGRA BISHOP MUSEUM PRESS HONOLULU Cover image: The potentially endemic and undescribed Tetragnatha sp., believed restricted to the totora reeds lin - ing the shores of Rano Raraku crater lake. Photo: Darko Cortoras. Bishop Museum Press has been publishing scholarly books on the natu - ESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The R Bishop Museum Occasional Papers (eISSN 2376-3191) is a series of short papers describing original research in the natural and cultural sci - PUBLICATIONS OF ences. BISHOP MUSEUM The Bishop Museum Press also publishes the Bishop Museum Bulletin series. It was begun in 1922 as a series of monographs presenting the results of research throughout the Pacific in many scientific fields. In 1987, the Bulletin series was separated into the Museum’s five current monographic series, issued irregularly and, since 2017, electronically: Bishop Museum Bulletins in Anthropology (eISSN 2376-3132) Bishop Museum Bulletins in Botany (eISSN 2376-3078) Bishop Museum Bulletins in Entomology (eISSN 2376-3124) Bishop Museum Bulletins in Zoology (eISSN 2376-3213) Bishop Museum Bulletins in Cultural and Environmental Studies (eISSN 2376-3159) To subscribe to any of the above series, or to purchase individual publi - cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. BERNICE PAUAHI BISHOP MUSEUM ISSN 0893-1348 (print) The State Museum of Natural and Cultural History ISSN 2376-3191 (online) 1525 Bernice Street Copyright © by Bishop Museum Honolulu, Hawai‘i 96817-2704, USA Published online: 25 May 2017 ISSN (online): 2376-3191 Spiders of Rapa Nui (Easter Island) Revisted . -
Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst. -
Lizards & Snakes: Alive!
LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth. -
Zootaxa,Get an Eyeful of This: a New Species of Giant Spitting Cobra From
Zootaxa 1532: 51–68 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Get an eyeful of this: a new species of giant spitting cobra from eastern and north-eastern Africa (Squamata: Serpentes: Elapidae: Naja) WOLFGANG WÜSTER1,3 & DONALD G. BROADLEY2 1School of Biological Sciences, University of Wales, Bangor LL57 2UW, UK. Tel. +44 1248 382301; Fax: +44 1248 371644; E-mail: [email protected] 2Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 3Corresponding author Abstract We describe a new species of giant spitting cobra, Naja ashei sp. nov., from eastern and north-eastern Africa. The species was previously regarded as a colour phase of the black-necked spitting cobra, N. nigricollis. However, mtDNA sequence data show it to be more closely related to N. mossambica than N. nigricollis. The new species is diagnosable from all other African spitting cobras by the possession of a unique clade of mtDNA haplotypes and a combination of colour pat- tern and scalation characteristics. Its distribution includes the dry lowlands of northern and eastern Kenya, north-eastern Uganda, southern Ethiopia and southern Somalia. Key words: Naja ashei sp. nov., Naja nigricollis, Naja mossambica, Serpentes, Elapidae, Africa, mitochondrial DNA, phylogeny, multivariate morphometrics Introduction Among venomous snakes, cobras are among those that have the highest public awareness profile. Neverthe- less, our understanding of the taxonomy of the group has until recently remained woefully inadequate, partic- ularly in terms of understanding the species limits within different well differentiated species groups. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Diversidad De Arañas (Arachnida: Araneae) Asociadas Con Viviendas De La Ciudad De México (Zona Metropolitana)
Revista Mexicana de Biodiversidad 80: 55-69, 2009 Diversidad de arañas (Arachnida: Araneae) asociadas con viviendas de la ciudad de México (Zona Metropolitana) Spider diversity (Arachnida: Araneae) associated with houses in México city (Metropolitan area) César Gabriel Durán-Barrón*, Oscar F. Francke y Tila Ma. Pérez-Ortiz Colección Nacional de Arácnidos (CNAN), Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apartado postal 70-153, 04510 México, D. F., México. *Correspondencia: [email protected] Resumen. La ecología urbana es un área de investigación relativamente reciente. Los ecosistemas urbanos son aquellos defi nidos como ambientes dominados por el hombre. Con el proceso de urbanización, insectos y arácnidos silvestres aprovechan los nuevos microhábitats que las viviendas humanas ofrecen. Se revisaron arañas recolectadas dentro de 109 viviendas durante los años de 1985 a 1986, 1996 a 2001 y 2002 a 2003. Se cuantifi caron 1 196 organismos , los cuales se determinaron hasta especie. Se obtuvo una lista de 25 familias, 52 géneros y 63 especies de arañas sinantrópicas. Se utilizaron 3 índices (ocupación, densidad y estacionalidad) y un análisis de intervalos para sustentar la siguiente clasifi cación: accidentales (índice de densidad de 0-0.9), ocasionales (1-2.9), frecuentes (3.0-9.9) y comunes (10 en adelante). Se comparan las faunas de arañas sinantrópicas de 5 países del Nuevo Mundo. Palabras clave: sinantropismo, ecología, urbanización, microhábitats. Abstract. Urban ecology is a relatively new area of research, with urban ecosystems being defi ned as environments dominated by humans. Insects and arachnids are 2 groups that successfully exploit the habitats offered by human habitations. -
University of Copenhagen
Regarding the noun in the Hebrew Bible Provencal, Philippe Published in: Journal for the Study of the Old Testament DOI: 10.117/0309089205052683 Publication date: 2005 Citation for published version (APA): Provencal, P. (2005). Regarding the noun in the Hebrew Bible. Journal for the Study of the Old Testament, 29(3), 371-379. https://doi.org/10.117/0309089205052683 Download date: 29. sep.. 2021 [JSOT293 (2005) 371-379] DOI: 10.117/0309089205052683 Regarding the Noun "pB in the Hebrew Bible* Philippe Provençal Natural History Museum, Universitetsparken bygn. 210, 8000 Aarhus C, Denmark Abstract The semantic value of the Classical Hebrew noun *pü (säräp) is analysed by comparing the information found in the textual witnesses in the Hebrew Bible with archaeological, historical and zoological data. This analysis confirms that the word means 'cobra' in Classical Hebrew, as both the mythological use in the Bible and the iconographie data from archaeologi cal material from the Levant fit together with the zoological data regarding cobras. The understanding found in ancient translations, i.e. the Septuagint, the Vulgate and Peshitta, together with the way desert snakes are designated by Bedouin in the Sinai in recent times, are drawn in to further strengthen this identification. Introduction and Methods The noun *\1\D (säräp) has an apparently complex semantic value in the Hebrew Bible. The term, which will be the main focus of this study, occurs only at Num. 21.6, 8; Deut. 8.15; Isa. 6.2, 6; 14.29; 30.6—textual witnesses that provide equivocal information on the meaning of the Hebrew word. -
How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity As a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting
toxins Article How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting Nadya Panagides 1,†, Timothy N.W. Jackson 1,†, Maria P. Ikonomopoulou 2,3,†, Kevin Arbuckle 4,†, Rudolf Pretzler 1,†, Daryl C. Yang 5,†, Syed A. Ali 1,6, Ivan Koludarov 1, James Dobson 1, Brittany Sanker 1, Angelique Asselin 1, Renan C. Santana 1, Iwan Hendrikx 1, Harold van der Ploeg 7, Jeremie Tai-A-Pin 8, Romilly van den Bergh 9, Harald M.I. Kerkkamp 10, Freek J. Vonk 9, Arno Naude 11, Morné A. Strydom 12,13, Louis Jacobsz 14, Nathan Dunstan 15, Marc Jaeger 16, Wayne C. Hodgson 5, John Miles 2,3,17,‡ and Bryan G. Fry 1,*,‡ 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (N.P.); [email protected] (T.N.W.J.); [email protected] (R.P.); [email protected] (S.A.A.); [email protected] (I.K.); [email protected] (J.D.); [email protected] (B.S.); [email protected] (A.A.); [email protected] (R.C.S.); [email protected] (I.H.) 2 QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; [email protected] (M.P.I.); [email protected] (J.M.) 3 School of Medicine, The University of Queensland, Herston, QLD 4002, Australia 4 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; [email protected] 5 Monash Venom Group, Department of Pharmacology, Monash University, -
Preclinical Antivenom-Efficacy Testing Reveals Potentially Disturbing Deficiencies of Snakebite Treatment Capability in East Africa
RESEARCH ARTICLE Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa Robert A. Harrison1*, George O. Oluoch2, Stuart Ainsworth1, Jaffer Alsolaiss1, Fiona Bolton1, Ana-Silvia Arias3, JoseÂ-MarõÂa GutieÂrrez3, Paul Rowley1, Stephen Kalya4, Hastings Ozwara2, Nicholas R. Casewell1 1 The Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom, 2 The Institute of Primate Research, National Museums of Kenya, a1111111111 Karen, Nairobi, Kenya, 3 Instituto Clodomiro Picado, Facultad de MicrobiologõÂa, Universidad de Costa Rica, a1111111111 San JoseÂ, Costa Rica, 4 County Health Services, County Government of Baringo, Kabarnet, Baringo, Kenya a1111111111 a1111111111 * [email protected] a1111111111 Abstract OPEN ACCESS Citation: Harrison RA, Oluoch GO, Ainsworth S, Alsolaiss J, Bolton F, Arias A-S, et al. (2017) Background Preclinical antivenom-efficacy testing reveals Antivenom is the treatment of choice for snakebite, which annually kills an estimated 32,000 potentially disturbing deficiencies of snakebite people in sub-Saharan Africa and leaves approximately 100,000 survivors with permanent treatment capability in East Africa. PLoS Negl Trop Dis 11(10): e0005969. https://doi.org/10.1371/ physical disabilities that exert a considerable socioeconomic burden. Over the past two journal.pntd.0005969 decades, the high costs of the most polyspecifically-effective antivenoms have sequentially Editor: Jean-Philippe Chippaux, Institut de reduced demand, commercial manufacturing incentives and production volumes that have Recherche pour le DeÂveloppement, BENIN combined to create a continent-wide vacuum of effective snakebite therapy. This was Received: August 1, 2017 quickly filled with new, less expensive antivenoms, many of which are of untested efficacy.