Naja Ashei) and Its Neutralization by Antivenom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Equatorial Spitting Cobra) Venom a P
The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 4 | pages 451-459 Biochemical and toxinological characterization of Naja sumatrana ER P (Equatorial spitting cobra) venom A P Yap MKK (1), Tan NH (1), Fung SY (1) RIGINAL O (1) Department of Molecular Medicine, Center for Natural Products and Drug Research (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. Abstract: The lethal and enzymatic activities of venom from Naja sumatrana (Equatorial spitting cobra) were determined and compared to venoms from three other Southeast Asian cobras (Naja sputatrix, Naja siamensis and Naja kaouthia). All four venoms exhibited the common characteristic enzymatic activities of Asiatic cobra venoms: low protease, phosphodiesterase, alkaline phosphomonoesterase and L-amino acid oxidase activities, moderately high acetylcholinesterase and hyaluronidase activities and high phospholipase A2. Fractionation of N. sumatrana venom by Resource® S cation exchange chromatography (GE Healthcare, USA) yielded nine major protein peaks, with all except the acidic protein peak being lethal to mice. Most of the protein peaks exhibit enzymatic activities, and L-amino acid oxidase, alkaline phosphomonoesterase, acetylcholinesterase, 5’-nucleotidase and hyaluronidase exist in multiple forms. Comparison of the Resource® S chromatograms of the four cobra venoms clearly indicates that the protein composition of N. sumatrana venom is distinct from venoms of the other two spitting cobras, N. sputatrix (Javan spitting cobra) and N. siamensis (Indochinese spitting cobra). The results support the revised systematics of the Asiatic cobra based on multivariate analysis of morphological characters. The three spitting cobra venoms exhibit two common features: the presence of basic, potentially pharmacologically active phospholipases A2 and a high content of polypeptide cardiotoxin, suggesting that the pathophysiological actions of the three spitting cobra venoms may be similar. -
Human Mast Cell Tryptase Is a Potential Treatment for Snakebite
ORIGINAL RESEARCH published: 09 July 2018 doi: 10.3389/fimmu.2018.01532 Human Mast Cell Tryptase Is a Potential Treatment for Snakebite Edited by: Envenoming Across Multiple Snake Ulrich Blank, Institut National de la Santé Species et de la Recherche Médicale (INSERM), France Elizabeth Anderson1†, Kathrin Stavenhagen 2†, Daniel Kolarich 2†, Christian P. Sommerhoff 3, Reviewed by: Marcus Maurer 1 and Martin Metz 1* Nicolas Gaudenzio, Institut National de la Santé 1 Department of Dermatology and Allergy, Charité – Universitätsmedizin Berlin, Berlin, Germany, 2 Department of Biomolecular et de la Recherche Médicale Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany, 3 Institute of Laboratory Medicine, University (INSERM), France Hospital, Ludwig-Maximilians-University, Munich, Germany Axel Lorentz, University of Hohenheim, Germany Snake envenoming is a serious and neglected public health crisis that is responsible *Correspondence: for as many as 125,000 deaths per year, which is one of the reasons the World Health Martin Metz Organization has recently reinstated snakebite envenoming to its list of category A [email protected] neglected tropical diseases. Here, we investigated the ability of human mast cell prote- †Present address: Elizabeth Anderson, ases to detoxify six venoms from a spectrum of phylogenetically distinct snakes. To this School of Medicine, UC end, we developed a zebrafish model to assess effects on the toxicity of the venoms San Diego, San Diego, CA, United States; and characterized the degradation of venom proteins by mass spectrometry. All snake Kathrin Stavenhagen, venoms tested were detoxified by degradation of various venom proteins by the mast Department of Surgery, cell protease tryptase , and not by other proteases. -
Lizards & Snakes: Alive!
LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth. -
Zootaxa,Get an Eyeful of This: a New Species of Giant Spitting Cobra From
Zootaxa 1532: 51–68 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Get an eyeful of this: a new species of giant spitting cobra from eastern and north-eastern Africa (Squamata: Serpentes: Elapidae: Naja) WOLFGANG WÜSTER1,3 & DONALD G. BROADLEY2 1School of Biological Sciences, University of Wales, Bangor LL57 2UW, UK. Tel. +44 1248 382301; Fax: +44 1248 371644; E-mail: [email protected] 2Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 3Corresponding author Abstract We describe a new species of giant spitting cobra, Naja ashei sp. nov., from eastern and north-eastern Africa. The species was previously regarded as a colour phase of the black-necked spitting cobra, N. nigricollis. However, mtDNA sequence data show it to be more closely related to N. mossambica than N. nigricollis. The new species is diagnosable from all other African spitting cobras by the possession of a unique clade of mtDNA haplotypes and a combination of colour pat- tern and scalation characteristics. Its distribution includes the dry lowlands of northern and eastern Kenya, north-eastern Uganda, southern Ethiopia and southern Somalia. Key words: Naja ashei sp. nov., Naja nigricollis, Naja mossambica, Serpentes, Elapidae, Africa, mitochondrial DNA, phylogeny, multivariate morphometrics Introduction Among venomous snakes, cobras are among those that have the highest public awareness profile. Neverthe- less, our understanding of the taxonomy of the group has until recently remained woefully inadequate, partic- ularly in terms of understanding the species limits within different well differentiated species groups. -
University of Copenhagen
Regarding the noun in the Hebrew Bible Provencal, Philippe Published in: Journal for the Study of the Old Testament DOI: 10.117/0309089205052683 Publication date: 2005 Citation for published version (APA): Provencal, P. (2005). Regarding the noun in the Hebrew Bible. Journal for the Study of the Old Testament, 29(3), 371-379. https://doi.org/10.117/0309089205052683 Download date: 29. sep.. 2021 [JSOT293 (2005) 371-379] DOI: 10.117/0309089205052683 Regarding the Noun "pB in the Hebrew Bible* Philippe Provençal Natural History Museum, Universitetsparken bygn. 210, 8000 Aarhus C, Denmark Abstract The semantic value of the Classical Hebrew noun *pü (säräp) is analysed by comparing the information found in the textual witnesses in the Hebrew Bible with archaeological, historical and zoological data. This analysis confirms that the word means 'cobra' in Classical Hebrew, as both the mythological use in the Bible and the iconographie data from archaeologi cal material from the Levant fit together with the zoological data regarding cobras. The understanding found in ancient translations, i.e. the Septuagint, the Vulgate and Peshitta, together with the way desert snakes are designated by Bedouin in the Sinai in recent times, are drawn in to further strengthen this identification. Introduction and Methods The noun *\1\D (säräp) has an apparently complex semantic value in the Hebrew Bible. The term, which will be the main focus of this study, occurs only at Num. 21.6, 8; Deut. 8.15; Isa. 6.2, 6; 14.29; 30.6—textual witnesses that provide equivocal information on the meaning of the Hebrew word. -
How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity As a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting
toxins Article How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting Nadya Panagides 1,†, Timothy N.W. Jackson 1,†, Maria P. Ikonomopoulou 2,3,†, Kevin Arbuckle 4,†, Rudolf Pretzler 1,†, Daryl C. Yang 5,†, Syed A. Ali 1,6, Ivan Koludarov 1, James Dobson 1, Brittany Sanker 1, Angelique Asselin 1, Renan C. Santana 1, Iwan Hendrikx 1, Harold van der Ploeg 7, Jeremie Tai-A-Pin 8, Romilly van den Bergh 9, Harald M.I. Kerkkamp 10, Freek J. Vonk 9, Arno Naude 11, Morné A. Strydom 12,13, Louis Jacobsz 14, Nathan Dunstan 15, Marc Jaeger 16, Wayne C. Hodgson 5, John Miles 2,3,17,‡ and Bryan G. Fry 1,*,‡ 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (N.P.); [email protected] (T.N.W.J.); [email protected] (R.P.); [email protected] (S.A.A.); [email protected] (I.K.); [email protected] (J.D.); [email protected] (B.S.); [email protected] (A.A.); [email protected] (R.C.S.); [email protected] (I.H.) 2 QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; [email protected] (M.P.I.); [email protected] (J.M.) 3 School of Medicine, The University of Queensland, Herston, QLD 4002, Australia 4 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; [email protected] 5 Monash Venom Group, Department of Pharmacology, Monash University, -
Preclinical Antivenom-Efficacy Testing Reveals Potentially Disturbing Deficiencies of Snakebite Treatment Capability in East Africa
RESEARCH ARTICLE Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa Robert A. Harrison1*, George O. Oluoch2, Stuart Ainsworth1, Jaffer Alsolaiss1, Fiona Bolton1, Ana-Silvia Arias3, JoseÂ-MarõÂa GutieÂrrez3, Paul Rowley1, Stephen Kalya4, Hastings Ozwara2, Nicholas R. Casewell1 1 The Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom, 2 The Institute of Primate Research, National Museums of Kenya, a1111111111 Karen, Nairobi, Kenya, 3 Instituto Clodomiro Picado, Facultad de MicrobiologõÂa, Universidad de Costa Rica, a1111111111 San JoseÂ, Costa Rica, 4 County Health Services, County Government of Baringo, Kabarnet, Baringo, Kenya a1111111111 a1111111111 * [email protected] a1111111111 Abstract OPEN ACCESS Citation: Harrison RA, Oluoch GO, Ainsworth S, Alsolaiss J, Bolton F, Arias A-S, et al. (2017) Background Preclinical antivenom-efficacy testing reveals Antivenom is the treatment of choice for snakebite, which annually kills an estimated 32,000 potentially disturbing deficiencies of snakebite people in sub-Saharan Africa and leaves approximately 100,000 survivors with permanent treatment capability in East Africa. PLoS Negl Trop Dis 11(10): e0005969. https://doi.org/10.1371/ physical disabilities that exert a considerable socioeconomic burden. Over the past two journal.pntd.0005969 decades, the high costs of the most polyspecifically-effective antivenoms have sequentially Editor: Jean-Philippe Chippaux, Institut de reduced demand, commercial manufacturing incentives and production volumes that have Recherche pour le DeÂveloppement, BENIN combined to create a continent-wide vacuum of effective snakebite therapy. This was Received: August 1, 2017 quickly filled with new, less expensive antivenoms, many of which are of untested efficacy. -
2017 Jones B Msc
Bangor University MASTERS BY RESEARCH The Evolution of Defensive Strategies in Cobras Jones, Bryony Award date: 2017 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 The Evolution of Defensive Strategies in Cobras Bryony Jones Supervisor: Dr Wolfgang Wüster Thesis submitted for the degree of Masters of Science by Research Biological Sciences The Evolution of Defensive Strategies in Cobras Abstract Species use multiple defensive strategies aimed at different sensory systems depending on the level of threat, type of predator and options for escape. The core cobra clade is a group of highly venomous Elapids that share defensive characteristics, containing true cobras of the genus Naja and related genera Aspidelaps, Hemachatus, Walterinnesia and Pseudohaje. Species combine the use of three visual and chemical strategies to prevent predation from a distance: spitting venom, hooding and aposematic patterns. -
Five-Year Experience with Chinese Cobra (Naja Atra)-Related Injuries In
ORIGINAL Five-year experience with Chinese cobra (Naja atra)– ARTICLE related injuries in two acute hospitals in Hong Kong OF Wong 黄凱峯 Tommy SK Lam 林成傑 Objective To review the clinical features and management of patients with HT Fung 馮顯達 injuries related to the Chinese cobra (Naja atra). CH Choy 蔡正謙 Design Retrospective study. Setting Two acute hospitals in Hong Kong. Main outcome measures The nature of injuries, envenoming features, complications, response to antivenom therapy, and outcome. Results Eighteen patients were recruited during the 5-year study period. Fifteen of them were snake-bitten, the remaining three suffered ocular injuries. Of the 15 patients with cobra bites, 14 (93%) presented with local swelling. No patient developed severe neurotoxic symptoms. Two patients had laboratory features of haemolysis. Fourteen patients received antivenom therapy and five of them subsequently underwent surgical interventions for extensive local tissue damage and necrosis. There was no fatality. Conclusion Bites from Chinese cobra result in serious local complications with extensive tissue necrosis and minimal neurotoxic symptoms. There is an apparent trend of favourable outcomes following the early administration of antivenom to patients without early signs of irreversible tissue damage. Further research is needed to evaluate the effectiveness of early antivenom use in Chinese cobra bites in order to minimise extent of tissue damage. Introduction Snake envenomation is not an uncommon medical emergency in Hong Kong. Little information about local cobra (Naja atra) envenomation has been reported however. Only three local cases could be found in the literature.1,2 Two of these were described incidentally in a case series about the bamboo snake (Cryptelytrops albolabris), which is responsible for 95% of snake envenomations in this region. -
For All Snakebites Visit a Health Facility Immediately!
Contact Royjan Taylor for emergencies: +254718290324 (also available on whatsapp) FOR ALL SNAKEBITES VISIT A HEALTH FACILITY Royjan Taylor Anton Childs David Warrell Anton Childs Wolfgang Wuster Black Mamba Black Necked Blanding’s Tree Boomslang East African Dendroaspis polylepis Spitting Cobra Snake female / male Dispholidus typus Garter Snake IMMEDIATELY! Naja nigricollis Toxicodryas blandingii Elapsoidia loveridgei Wolfgang Wuster Anton Childs Maik Dobiey Patrick Malonza Maik Dobiey David Warrell Maik Dobiey David Warrell Eastern Green Egyptian Cobra Forest Cobra Forest Night Adder Gaboon Viper Gold’s Tree Cobra Green Bush Viper Jameson’s Mamba Mamba Naja haje Naja melanoleuca Causus lichtensteinii Bitis gabonica Pseudohaje goldii Atheris squamiger Dendroaspis jamesoni kaimosi Dendroaspis angusticeps David Warrell Maik Dobiey Wolfgang Wuster Royjan Taylor Danie Theron Anton Childs Royjan Taylor Danie Theron Kenya Horned Viper Kenya Montane Large Brown Mount Kenya North East African Puff Adder Red Spitting Cobra Rhinoceros Viper Bitis wothingtoni Viper Spitting Cobra Bush Viper Carpet Viper Bitis arietans Naja pallida Bitis nasicornis Montatheris hindii Holotype / Naja ashei Atheris desaixi Echis pyramidum Common Venomous Snakes of Kenya Anton Childs Royjan Taylor Anton Childs Anton Childs Royjan Taylor Royjan Taylor Royjan Taylor Rhombic Night Rough-Scaled Bush Savannah Vine Small-Scaled Snouted Night Velvet Green Night Yellow Bellied Sea Adder Viper Snake or Twig Snake Mole Viper Adder Adder Snake Causus rhombeatus Atheris hispida Thelotornis mossambicanus Atractaspis microlepidota Causus defilippi Causus resimus Pelamis platurus. -
Target Tracking During Venom 'Spitting' by Cobras
1797 The Journal of Experimental Biology 213, 1797-1802 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jeb.037135 Target tracking during venom ‘spitting’ by cobras Guido Westhoff1, Melissa Boetig2, Horst Bleckmann1 and Bruce A. Young3,* 1Institute of Zoology, University of Bonn, Bonn 53115, Germany, 2Department of Biology, Washburn University, Topeka, KS 66621, USA and 3Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA 01856, USA *Author for correspondence ([email protected]) Accepted 10 February 2010 SUMMARY Spitting cobras, which defend themselves by streaming venom towards the face and/or eyes of a predator, must be highly accurate because the venom they spit is only an effective deterrent if it lands on the predator’s cornea. Several factors make this level of accuracy difficult to achieve; the target is moving, is frequently >1m away from the snake and the venom stream is released in approximately 50ms. In the present study we show that spitting cobras can accurately track the movements of a potentially threatening vertebrate, and by anticipating its subsequent (short-term) movements direct their venom to maximize the likelihood of striking the target’s eye. Unlike other animals that project material, in spitting cobras the discharge orifice (the fang) is relatively fixed so directing the venom stream requires rapid movements of the entire head. The cobra’s ability to track and anticipate the target’s movement, and to perform rapid cephalic oscillations that coordinate with the target’s movements suggest a level of neural processing that has not been attributed to snakes, or other reptiles, previously. -
Informational Issue of Eurasian Regional Association of Zoos and Aquariums
GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 MOSCOW 2009 GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 _________________ MOSCOW - 2009 - Information Issue of Eurasian Regional Association of Zoos and Aquariums. Issue 28. – 2009. - 424 p. ISBN 978-5-904012-10-6 The current issue comprises information on EARAZA member zoos and other zoological institutions. The first part of the publication includes collection inventories and data on breeding in all zoological collections. The second part of the issue contains information on the meetings, workshops, trips and conferences which were held both in our country and abroad, as well as reports on the EARAZA activities. Chief executive editor Vladimir Spitsin General Director of Moscow Zoo Compiling Editors: Т. Andreeva M. Goretskaya N. Karpov V. Ostapenko V. Sheveleva T. Vershinina Translators: T. Arzhanova M. Proutkina A. Simonova УДК [597.6/599:639.1.04]:59.006 ISBN 978-5-904012-10-6 © 2009 Moscow Zoo Eurasian Regional Association of Zoos and Aquariums Dear Colleagues, (EARAZA) We offer you the 28th volume of the “Informational Issue of the Eurasian Regional Association of Zoos and Aquariums”. It has been prepared by the EARAZA Zoo 123242 Russia, Moscow, Bolshaya Gruzinskaya 1. Informational Center (ZIC), based on the results of the analysis of the data provided by Telephone/fax: (499) 255-63-64 the zoological institutions of the region. E-mail: [email protected], [email protected], [email protected].