Absolute Pitch Diana Deutsch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Absolute and Relative Pitch Processing in the Human Brain: Neural and Behavioral Evidence
bioRxiv preprint doi: https://doi.org/10.1101/526541; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Absolute and relative pitch processing in the human brain: Neural and behavioral evidence Simon Leipold a, Christian Brauchli a, Marielle Greber a, Lutz Jäncke a, b, c Author Affiliations a Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland b University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland c Department of Special Education, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia Corresponding Authors Simon Leipold Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Lutz Jäncke Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Keywords Absolute Pitch, Multivariate Pattern Analysis, Neural Efficiency, Pitch Processing, fMRI Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF), grant no. 320030_163149 to LJ. We thank our research interns Anna Speckert, Chantal Oderbolz, Désirée Yamada, Fabian Demuth, Florence Bernays, Joëlle Albrecht, Kathrin Baur, Laura Keller, Marilena Wilding, Melek Haçan, Nicole Hedinger, Pascal Misala, Petra Meier, Sarah Appenzeller, Tenzin Dotschung, Valerie Hungerbühler, Vanessa Vallesi, -
Absolute Pitch (AP)
Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors -
Frequency Ratios and the Perception of Tone Patterns
Psychonomic Bulletin & Review 1994, 1 (2), 191-201 Frequency ratios and the perception of tone patterns E. GLENN SCHELLENBERG University of Windsor, Windsor, Ontario, Canada and SANDRA E. TREHUB University of Toronto, Mississauga, Ontario, Canada We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted for judgments of consonance and dissonance and for judgments of similarity across a wide range of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by musically experienced and inexperienced listeners. These findings confirm the generality ofpre vious suggestions of perceptual processing advantages for pairs of tones related by simple fre quency ratios. Since the time of Pythagoras, the relative simplicity of monics of a single complex tone. Currently, the degree the frequency relations between tones has been consid of perceived consonance is believed to result from both ered fundamental to consonance (pleasantness) and dis sensory and experiential factors. Whereas sensory con sonance (unpleasantness) in music. Most naturally OCCUf sonance is constant across musical styles and cultures, mu ring tones (e.g., the sounds of speech or music) are sical consonance presumably results from learning what complex, consisting of multiple pure-tone (sine wave) sounds pleasant in a particular musical style. components. Terhardt (1974, 1978, 1984) has suggested Helmholtz (1885/1954) proposed that the consonance that relations between different tones may be influenced of two simultaneous complex tones is a function of the by relations between components of a single complex tone. ratio between their fundamental frequencies-the simpler For single complex tones, ineluding those of speech and the ratio, the more harmonics the tones have in common. -
Perception of Relative Pitch with Different References: Some Absolute
Perception & Psychophysics 1995. 57 (7). 962-970 Perception ofrelative pitch with different references: Some absolute-pitch listeners can't tell musical interval names KEN'ICHI MIYAZAKI Niigata University, Niigata, Japan 1\\'0 experiments were conducted to examine the effect of absolute-pitch possession on relative pitch processing. Listeners attempted to identify melodic intervals ranging from a semitone to an oc tave with different reference tones. Listeners with absolute pitch showed declined performance when the reference was out-of-tune C,out-of-tune E, or F#, relative to when the reference was C.In contrast, listeners who had no absolute pitch maintained relatively high performance in all reference conditions. These results suggest that absolute-pitch listeners are weak in relative-pitch processing and show a ten dency to rely on absolute pitch in relative-pitch tasks. One ofthe most important areas in our auditory experi erty and could be regarded as a medium in which tonal ence where pitch is used in a highly elaborated manner is patterns occur. music. In music ofthe tonal harmonic idiom, pitch, in as People who have good absolute pitch have been admired sociation with time, provides a tonal space in which as highly talented musicians. Indeed, absolute pitch may melodic and harmonic events occur in a hierarchical man be quite useful in musical practice, particularly when tran ner. Musical tones have different degrees of stability de scribing a heard musical passage into a musical notation or pending on the established tonal context (Lerdahl, 1988; singing a complicated melody at first sight. However, it Piston, 1987). -
Absolute Pitch
EXPLORING THE SELF-CONCEPT AND IDENTITY OF SYDNEY CONSERVATORIUM STUDENTS WITH AND WITHOUT ABSOLUTE PITCH. Julie O’Connor A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Music (Music Education) (Honours), Sydney Conservatorium of Music, University of Sydney. 2006 ii Abstract Absolute Pitch (AP) is the ability to identify pitches without external references (Parncutt & Levitin, 2001). It is a rare ability that is more prevalent among musicians. This qualitative study explored the perceptions of Sydney Conservatorium of Music students through interviews, focusing on the value of AP possession, and implications for music self-concept. The study involved 12 Conservatorium University and High School students; six participants were self- nominated absolute pitch possessors, and the remaining six were categorised as relative pitch (RP) users. Through discussions of the value, prevalence and practicality of AP, the data suggested that AP is a highly desirable ability among Conservatorium students, and particularly valued by those who possess it. The results also suggested that RP students tend to have less positive self-concepts in aural perception and music theory, while having more positive self-concepts in other musical arenas. The majority of the AP participants had a desire to become a solo performer, and the RP participants’ tended to plan broader musical goals such as combining teaching and ensemble performance. These results suggested that the possession of AP has had a significant effect on the identity of these individuals. iii Acknowledgements First and foremost, I would like to thank my supervisor, James Renwick, whose insightful advice (and subtle pushing) inspired and motivated me throughout the study. -
Incongruent Pitch Cues Are Associated with Increased Activation And
www.nature.com/scientificreports OPEN Incongruent pitch cues are associated with increased activation and functional Received: 29 August 2017 Accepted: 8 March 2018 connectivity in the frontal areas Published: xx xx xxxx Jo-Fu Lotus Lin1, Toshiaki Imada2,3, Patricia K. Kuhl2,3 & Fa-Hsuan Lin 1 Pitch plays a crucial role in music and speech perception. Pitch perception is characterized by multiple perceptual dimensions, such as pitch height and chroma. Information provided by auditory signals that are related to these perceptual dimensions can be either congruent or incongruent. To create conficting cues for pitch perception, we modifed Shepard tones by varying the pitch height and pitch chroma dimensions in either the same or opposite directions. Our behavioral data showed that most listeners judged pitch changes based on pitch chroma, instead of pitch height, when incongruent information was provided. The reliance on pitch chroma resulted in a stable percept of upward or downward pitch shift, rather than alternating between two diferent percepts. Across the incongruent and congruent conditions, consistent activation was found in the bilateral superior temporal and inferior frontal areas. In addition, signifcantly stronger activation was observed in the inferior frontal areas during the incongruent compared to congruent conditions. Enhanced functional connectivity was found between the left temporal and bilateral frontal areas in the incongruent than congruent conditions. Increased intra-hemispheric and inter-hemispheric connectivity was also observed in the frontal areas. Our results suggest the involvement of the frontal lobe in top-down and bottom-up processes to generate a stable percept of pitch change with conficting perceptual cues. -
Fall 2011 Sabbatical Report: Music and Cognition Margaret Tennant
Fall 2011 Sabbatical Report M. Tennant 1 Fall 2011 Sabbatical Report: Music and Cognition Margaret Tennant, Ph. D. May 26, 2012 Fall 2011 Sabbatical Report M. Tennant 2 Table of Contents Prologue 3 Sabbatical Report 4 Interactive Lecture, Multicultural Day April 10, 2012 18 Suggested Activities for Applying to Introductory Psychology 24 Conference Schedule SMPC 27 Bibliography 33 Fall 2011 Sabbatical Report M. Tennant 3 Prologue I would like to thank the Board of Trustees of the Ventura Community College District; Dr. James Meznek, Chancellor; Dr. Pam Eddinger, Moorpark College President; and the Moorpark College Academic Senate; for this opportunity for scholarly study during the Fall 2011 semester. The contents of this report include the following: 1) The Sabbatical Report: A brief overview of content researched during the sabbatical 2) Applications: Ideas for incorporating music into an introductory psychology course and the outline of the interactive lecture presented to students on Multicultural Day April 10, 2012. 3) Conference Schedule: The schedule of the Society of Perception and Music Cognition, held August 11-14, 2011. 4) Bibliography: A complete list of readings referenced or read during my Fall 2011 sabbatical. Fall 2011 Sabbatical Report M. Tennant 4 Music and Cognition: Fall 2011 Sabbatical Report Music is an integral part of the human experience, yet it largely omitted from introductory psychology texts (Sloboda & Juslin, 2010). It is not, however, omitted from students' lives. Music accompanies them as they socialize, shop, work, exercise, and worship. Music directs their thoughts and emotions in the films they see and the songs that they hear. How does this occur and what gives music such power? This sabbatical project was designed to better understand the underlying mechanisms of experiencing music and thus apply psychology to one of the passions of students’ lives. -
The Cognitive Neuroscience of Music
THE COGNITIVE NEUROSCIENCE OF MUSIC Isabelle Peretz Robert J. Zatorre Editors OXFORD UNIVERSITY PRESS Zat-fm.qxd 6/5/03 11:16 PM Page i THE COGNITIVE NEUROSCIENCE OF MUSIC This page intentionally left blank THE COGNITIVE NEUROSCIENCE OF MUSIC Edited by ISABELLE PERETZ Départment de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada and ROBERT J. ZATORRE Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada 1 Zat-fm.qxd 6/5/03 11:16 PM Page iv 1 Great Clarendon Street, Oxford Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © The New York Academy of Sciences, Chapters 1–7, 9–20, and 22–8, and Oxford University Press, Chapters 8 and 21. Most of the materials in this book originally appeared in The Biological Foundations of Music, published as Volume 930 of the Annals of the New York Academy of Sciences, June 2001 (ISBN 1-57331-306-8). This book is an expanded version of the original Annals volume. The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2003 All rights reserved. -
Frequency-Range Discriminations and Absolute Pitch in Black
Journal of Comparative Psychology Copyright 2006 by the American Psychological Association 2006, Vol. 120, No. 3, 217–228 0735-7036/06/$12.00 DOI: 10.1037/0735-7036.120.3.217 Frequency-Range Discriminations and Absolute Pitch in Black-Capped Chickadees (Poecile atricapillus), Mountain Chickadees (Poecile gambeli), and Zebra Finches (Taeniopygia guttata) Tiffany T. Y. Lee, Isabelle Charrier, and Ronald G. Weisman Laurie L. Bloomfield Queen’s University University of Alberta Christopher B. Sturdy University of Alberta The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees’ relatively poorer accuracy was traced to poorer discrim- ination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted. Keywords: absolute pitch perception, songbirds Oscines, the true songbirds, use song as a social signal to defend notes) to identify conspecifics (Nelson, 1988). However, one territory, and male oscines use song to attract females for court- acoustic feature, the frequency range of song notes, is cited re- ship. How oscines recognize their own species’ (conspecifics) peatedly in the literature as important to species recognition. -
Auditory Interface Design to Support
Auditory Interface Design to Support Rover Tele-Operation in the Presence of Background Speech: Evaluating the Effects of Sonification, Reference Level Sonification, and Sonification Transfer Function by Adrian Matheson A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Adrian Matheson 2013 Auditory Interface Design to Support Rover Tele-Operation in the Presence of Background Speech: Evaluating the Effects of Sonification, Reference Level Sonification, and Sonification Transfer Function Adrian Matheson Master of Applied Science Department of Mechanical and Industrial Engineering University of Toronto 2013 Abstract Preponderant visual interface use for conveying information from machine to human admits failures due to overwhelming the visual channel. This thesis investigates the suitability of auditory feedback and certain related design choices in settings involving background speech. Communicating a tele-operated vehicle’s tilt angle was the focal application. A simulator experiment with pitch feedback on one system variable, tilt angle, and its safety threshold was conducted. Manipulated in a within-subject design were: (1) presence vs. absence of speech, (2) discrete tilt alarm vs. discrete alarm and tilt sonification (continuous feedback), (3) tilt sonification vs. tilt and threshold sonification, and (4) linear vs. quadratic transfer function of variable to pitch. Designs with both variable and reference sonification were found to significantly reduce the time drivers spent exceeding the safety limit compared to the designs with no sonification, though this effect was not detected within the set of conditions with background speech audio. ii Acknowledgements I would like to thank my thesis supervisor, Birsen Donmez, for her guidance in bringing this thesis to fruition, and for other research-related opportunities I have had in the past two years. -
Connectionist Representations of Tonal Music
Connectionist Representations of Tonal Music CONNECTIONIST REPRESENTATIONS OF TONAL MUSIC Discovering Musical Patterns by Interpreting Artificial Neural Networks Michael R. W. Dawson Copyright © 2018 Michael Dawson Published by AU Press, Athabasca University 1200, 10011 – 109 Street, Edmonton, AB T5J 3S8 ISBN 978-1-77199-220-6 (pbk.) 978-1-77199-221-3 (PDF) 978-1-77199-222-0 (epub) doi: 10.15215/aupress/9781771992206.01 Cover and interior design by Sergiy Kozakov Printed and bound in Canada by Friesens Library and Archives Canada Cataloguing in Publication Dawson, Michael Robert William, 1959-, author Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / Michael R.W. Dawson. Includes bibliographical references and index. Issued in print and electronic formats. 1. Music—Psychological aspects—Case studies. 2. Music—Physiological aspects—Case studies. 3. Music—Philosophy and aesthetics—Case studies. 4. Neural networks (Computer science)—Case studies. I. Title. ML3830.D39 2018 781.1’1 C2017-907867-4 C2017-907868-2 We acknowledge the financial support of the Government of Canada through the Canada Book Fund (CBF) for our publishing activities and the assistance provided by the Government of Alberta through the Alberta Media Fund. This publication is licensed under a Creative Commons License, Attribution– Noncommercial–NoDerivative Works 4.0 International: see www.creativecommons.org. The text may be reproduced for non-commercial purposes, provided that credit is given to the -
Absolute Pitch
Psychological Bulletin Copyright 1993 by the American Psychological Association, Inc. 1993. Vol. 113. No. 2. 345-361 0033-2909/93/53.00 Absolute Pitch Annie H. Takeuchi and Stewart H. Hulse Absolute pitch (AP) is the ability to identify a tone's pitch or to produce a tone at a particular pitch without the use of an external reference pitch. AP exists in varying degrees among people generally described as AP possessors. AP possessors vary not only in the accuracy with which they can identify pitches but also in their ability to produce pitches absolutely and in their ability to identify tones of various timbres and in various pitch registers. AP possessors' memory for pitches is mediated by verbal pitch names; they do not have superior memory for pitches per se. Although the etiology of AP is not yet completely understood, evidence points toward the early-learning theory. This theory states that AP can be learned by anyone during a limited period early in development, up to about age 6, after which a general developmental shift from perceiving individual features to perceiving relations among features makes AP difficult or impossible to acquire. Absolute pitch (AP) is the ability to identify the pitch of a work with units of a single tone, whereas composers without AP musical tone or to produce a musical tone at a given pitch must work with pitch relations that require a minimum unit of without the use of an external reference pitch. Most humans two tones. process musical pitch relatively rather than absolutely. They Psychologists have puzzled over several questions about AP process the melodic and harmonic relations among pitches in- for over 100 years.