Frequency-Range Discriminations and Absolute Pitch in Black

Total Page:16

File Type:pdf, Size:1020Kb

Frequency-Range Discriminations and Absolute Pitch in Black Journal of Comparative Psychology Copyright 2006 by the American Psychological Association 2006, Vol. 120, No. 3, 217–228 0735-7036/06/$12.00 DOI: 10.1037/0735-7036.120.3.217 Frequency-Range Discriminations and Absolute Pitch in Black-Capped Chickadees (Poecile atricapillus), Mountain Chickadees (Poecile gambeli), and Zebra Finches (Taeniopygia guttata) Tiffany T. Y. Lee, Isabelle Charrier, and Ronald G. Weisman Laurie L. Bloomfield Queen’s University University of Alberta Christopher B. Sturdy University of Alberta The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees’ relatively poorer accuracy was traced to poorer discrim- ination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted. Keywords: absolute pitch perception, songbirds Oscines, the true songbirds, use song as a social signal to defend notes) to identify conspecifics (Nelson, 1988). However, one territory, and male oscines use song to attract females for court- acoustic feature, the frequency range of song notes, is cited re- ship. How oscines recognize their own species’ (conspecifics) peatedly in the literature as important to species recognition. songs in acoustic environments crowded with the songs of other Individual songbirds produce notes within narrowly circumscribed species (heterospecifics) has been the subject of much research. It species-typical ranges of spectral frequencies, and birds use this is now well known that songbirds aggregate information from pitch information to help distinguish between conspecific and several features (e.g., number of notes, note duration, and trill heterospecific singers. For example, in white-throated sparrows (Zonotrichia albicollis), normal songs elicited more territorial de- fense (e.g., song and approach to the speaker) than song pitch shifted either one octave below or two octaves above the frequen- Tiffany T. Y. Lee, Isabelle Charrier, and Laurie L. Bloomfield, Depart- ment of Psychology, University of Alberta, Edmonton, Alberta, Canada; cies in normal song (Falls, 1963). Similarly, in field sparrows Ronald G. Weisman, Departments of Psychology and Biology, Queen’s (Spizella pusilla), songs with notes within the normal frequency University, Kingston, Ontario, Canada; Christopher B. Sturdy, Department range elicit more territorial defense than song pitch shifted more of Psychology and Centre for Neuroscience, University of Alberta, Ed- than two standard deviations upward (Nelson, 1989b). Moreover, monton, Alberta, Canada. Nelson (1989b) was able to show that sparrows could use fre- Isabelle Charrier is now at the Bioacoustics Team, Universite´ Paris Sud, quency simultaneously to identify an individual neighbor and to Orsay, France. identify the range of conspecific songs. Interestingly, frequency This research was supported by Natural Sciences and Engineering range is a superordinate feature in song recognition; that is, in field Research Council of Canada Discovery Grants to Christopher B. Sturdy and Ronald G. Weisman and by an Alberta Ingenuity New Faculty Grant, experiments, frequency range predominates over other acoustic a Canada Foundation for Innovation New Opportunities Grant, and funding features (e.g., the timing of notes) in determining the strength of from the University of Alberta to Christopher B. Sturdy. A Province of the territorial response (see Nelson, 1989a; Weary, Lemon, & Alberta Graduate Scholarship supported Tiffany T. Y. Lee. A Killam Date, 1986). The finding that frequency range is important to Postdoctoral Fellowship and an Alberta Ingenuity Fund Fellowship sup- conspecific recognition has been replicated in at least 12 oscine ported Isabelle Charrier. Laurie L. Bloomfield was supported by a Natural species (e.g., Dabelsteen & Pedersen, 1985; Emlen, 1972; Falls, Sciences and Engineering Research Council of Canada PGS-B Scholar- 1963; Lohr, Weisman, & Nowicki, 1994; Nelson, 1989b; Nowicki, ship, an Alberta Ingenuity Fund Studentship, and a Walter Johns Scholar- Mitani, Nelson, & Marler, 1989; Thompson, 1969; Weary et al., ship from the University of Alberta. Correspondence concerning this article should be addressed to Christo- 1986; Weisman & Ratcliffe, 1989; Wunderle, 1979). pher B. Sturdy, Department of Psychology, P217 Biological Sciences The use of spectral frequency ranges to sort conspecific from Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada. heterospecific songs implies that songbirds represent the distribu- E-mail: [email protected] tion of pitches in conspecific song notes and use these stored 217 218 LEE, CHARRIER, BLOOMFIELD, WEISMAN, AND STURDY representations to classify songs and identify conspecifics. In other and responses to tones in the even ranges were not rewarded. In the words, songbirds use absolute pitch (AP) to help them identify counterbalanced, SϪ first version of the task, responses to tones in conspecific songs. AP refers to the ability to produce, identify, the even ranges were rewarded. In both versions of the task, zebra classify, or memorize pitches without the use of a current or recent finches accurately discriminated every shift between reward and external reference sound, which is clearly a close fit with what nonreward across the eight frequency ranges. In summary, zebra songbirds do when they use frequency range to identify conspe- finches can sort tones into eight pitch ranges with high accuracy. cific songs. The purpose of the present research was to coordinate Here we have broadened the study of oscine frequency-range the previously described field studies of song recognition with discriminations to include the AP abilities of two closely-related laboratory operant discrimination procedures to study the accuracy North American songbirds: black-capped chickadees (Poecile at- of songbirds’ AP. ricapillus) and mountain chickadees (Poecile gambeli). Black- The study of oscine AP in operant perceptual discriminations capped chickadees inhabit temperate regions of the northern two- originated in Hulse, Cynx, and Humpal’s (1984) inadvertent but thirds of the United States and much of Canada (Smith, 1993). serendipitous confounding of AP and relative pitch (RP) cues in Mountain chickadees, a closely related species (Gill, Mostrom, & starlings (Sturnus vulgaris). RP refers to the ability to recognize Mack, 1993), prefer alpine regions (McCallum, Grundel & Dahl- relationships between acoustic frequencies. In training birds in sten, 1999). In a few geographically unique regions (e.g., areas in operant discriminations of RP, researchers have presented the the Rocky Mountains), black-capped and mountain chickadees live same rewarded and unrewarded relative pitch changes on hundreds sympatrically. of trials in note sequences that begin at several different frequen- Much is known about the songs and calls of black-capped cies (e.g., Hulse & Cynx, 1985; Weary & Weisman, 1991; but see chickadees (see reviews by Hailman, 1989; Hailman & Ficken, MacDougall-Shackleton & Hulse, 1996; Njegovan & Weisman, 1996; Weisman & Ratcliffe, 2004). In contrast, little is known 1997, for effective alternative procedures for RP testing). If the about the vocalizations of mountain chickadees, except that their rewarded tone sequences begin at different frequencies than the whistled songs and buzzy calls are acoustically similar but distin- unrewarded sequences, then songbirds often learn to discriminate guishable from those of black-capped chickadees (Bloomfield, between the sequences using both RP and AP. These studies Charrier, & Sturdy, 2004; Hill & Lein, 1989; Lohr, 1995). Over provide ample evidence that songbirds can sort the starting fre- almost all of their geographical range, male black-capped chicka- quencies of rewarded and unrewarded tones into AP categories. dees sing a two-note vocalization (called the fee-bee song) in However, as definitive descriptions of AP, studies of confounded which the fee and bee notes are separated in pitch by a constant RP and AP are of limited value; they can tell us whether animals frequency ratio, and individual chickadees transpose the song have AP but not how skillfully animals are using AP. (holding the ratio constant) across the entire frequency ranges of In the present article, we report on the results of more sensitive the fee and bee notes (see Weisman & Ratcliffe, 2004). The songs and direct tests of oscine AP known as frequency-range discrim- of mountain chickadees are also composed of clearly whistled inations. In frequency-range discriminations, birds learn to classify notes, but the relationship between the notes, if any, is unknown. sine wave tones into ranges on the basis of associations between However, many mountain chickadee songs begin with a brief responses to the tones in successive ranges and reward or nonre- introductory note sung at a higher frequency than any note in ward.
Recommended publications
  • Absolute and Relative Pitch Processing in the Human Brain: Neural and Behavioral Evidence
    bioRxiv preprint doi: https://doi.org/10.1101/526541; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Absolute and relative pitch processing in the human brain: Neural and behavioral evidence Simon Leipold a, Christian Brauchli a, Marielle Greber a, Lutz Jäncke a, b, c Author Affiliations a Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland b University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland c Department of Special Education, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia Corresponding Authors Simon Leipold Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Lutz Jäncke Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Keywords Absolute Pitch, Multivariate Pattern Analysis, Neural Efficiency, Pitch Processing, fMRI Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF), grant no. 320030_163149 to LJ. We thank our research interns Anna Speckert, Chantal Oderbolz, Désirée Yamada, Fabian Demuth, Florence Bernays, Joëlle Albrecht, Kathrin Baur, Laura Keller, Marilena Wilding, Melek Haçan, Nicole Hedinger, Pascal Misala, Petra Meier, Sarah Appenzeller, Tenzin Dotschung, Valerie Hungerbühler, Vanessa Vallesi,
    [Show full text]
  • Chapter 5 Bioacoustics Approaches in Biodiversity Inventories
    Chapter 5 Bioacoustics approaches in biodiversity inventories by Martin K. Obrist Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Email: [email protected] Gianni Pavan Centro Interdisciplinare di Bioacustica e Ricerche Ambientali Dipartimento di Biologia Animale, Università di Pavia Via Taramelli 24, 27100 Pavia, Italy Email: [email protected] Jérôme Sueur Muséum national d'Histoire naturelle, Département Systématique et Evolution UMR 7205 CNRS OSEB, 45 rue Buffon, 75005 Paris, France Email: [email protected] Klaus Riede Zoologisches Forschungsmuseum Alexander Koenig Adenauerallee 160, 53113 Bonn, Germany Email: [email protected] Diego Llusia Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] Rafael Márquez Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] 68 Abstract Acoustic emissions of animals serve communicative purposes and most often contain species-specific and individual information exploitable to listeners, rendering bioacoustics predestined for biodiversity monitoring in visually inaccessible habitats. The physics of sound define the corner stones of this communicative framework, which is employed by animal groups from insects to mammals, of which examples of vocalisations are presented. Recording bioacoustic signals allows reproducible identification and documentation of species’ occurrences, but it requires technical prerequisites and behavioural precautions that are summarized. The storing, visualizing and analysing of sound recordings is illustrated and major software tools are shortly outlined. Finally, different approaches to bioacoustic monitoring are described, tips for setting up an acoustic inventory are compiled and a key for procedural advancement and a checklist to successful recording are given.
    [Show full text]
  • The Musical Influences of Nature: Electronic Composition and Ornithomusicology
    University of Huddersfield Repository McGarry, Peter The Musical Influences of Nature: Electronic Composition and Ornithomusicology Original Citation McGarry, Peter (2020) The Musical Influences of Nature: Electronic Composition and Ornithomusicology. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/35489/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Peter McGarry U1261720 The Musical Influences of Nature: 1 Electronic Music and Ornithomusicology University Of Huddersfield The School of Music, Humanities and Media Masters Thesis Peter McGarry The Musical Influences of Nature: Electronic Composition and Ornithomusicology Supervisor: Dr. Geoffery Cox Submitted: 23/12/2020 Peter McGarry U1261720 The Musical Influences of Nature: 2 Electronic Music and Ornithomusicology Abstract Zoomusicology is the study of animal sounds through a musical lens and is leading to a new era of sonic ideas and musical compositions.
    [Show full text]
  • A Definition of Song from Human Music Universals Observed in Primate Calls
    bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. A definition of song from human music universals observed in primate calls David Schruth1*, Christopher N. Templeton2, Darryl J. Holman1 1 Department of Anthropology, University of Washington 2 Department of Biology, Pacific University *Corresponding author, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Abstract Musical behavior is likely as old as our species with song originating as early as 60 million years ago in the primate order. Early singing likely evolved into the music of modern humans via multiple selective events, but efforts to disentangle these influences have been stifled by challenges to precisely define this behavior in a broadly applicable way. Detailed here is a method to quantify the elaborateness of acoustic displays using published spectrograms (n=832 calls) culled from the literature on primate vocalizations. Each spectrogram was scored by five trained analysts via visual assessments along six musically relevant acoustic parameters: tone, interval, transposition, repetition, rhythm, and syllabic variation.
    [Show full text]
  • SEM Awards Honorary Memberships for 2020
    Volume 55, Number 1 Winter 2021 SEM Awards Honorary Memberships for 2020 Jacqueline Cogdell DjeDje Edwin Seroussi Birgitta J. Johnson, University of South Carolina Mark Kligman, UCLA If I could quickly snatch two words to describe the career I first met Edwin Seroussi in New York in the early 1990s, and influence of UCLA Professor Emeritus Jacqueline when I was a graduate student and he was a young junior Cogdell DjeDje, I would borrow from the Los Angeles professor. I had many questions for him, seeking guid- heavy metal scene and deem her the QUIET RIOT. Many ance on studying the liturgical music of Middle Eastern who know her would describe her as soft spoken with a Jews. He greeted me warmly and patiently explained the very calm and focused demeanor. Always a kind face, and challenges and possible directions for research. From that even she has at times described herself as shy. But along day and onwards Edwin has been a guiding force to me with that almost regal steadiness and introspective aura for Jewish music scholarship. there is a consummate professional and a researcher, teacher, mentor, administrator, advocate, and colleague Edwin Seroussi was born in Uruguay and immigrated to who is here to shake things up. Beneath what sometimes Israel in 1971. After studying at Hebrew University he appears as an unassuming manner is a scholar of excel- served in the Israel Defense Forces and earned the rank lence, distinction, tenacity, candor, and respect who gently of Major. After earning a Masters at Hebrew University, he pushes her students, colleagues, and community to dig went to UCLA for his doctorate.
    [Show full text]
  • Absolute Pitch (AP)
    Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors
    [Show full text]
  • Animal Bioacoustics
    Sound Perspectives Technical Committee Report Animal Bioacoustics Members of the Animal Bioacoustics Technical Committee have diverse backgrounds and skills, which they apply to the study of sound in animals. Christine Erbe Animal bioacoustics is a field of research that encompasses sound production and Postal: reception by animals, animal communication, biosonar, active and passive acous- Centre for Marine Science tic technologies for population monitoring, acoustic ecology, and the effects of and Technology noise on animals. Animal bioacousticians come from very diverse backgrounds: Curtin University engineering, physics, geophysics, oceanography, biology, mathematics, psychol- Perth, Western Australia 6102 ogy, ecology, and computer science. Some of us work in industry (e.g., petroleum, Australia mining, energy, shipping, construction, environmental consulting, tourism), some work in government (e.g., Departments of Environment, Fisheries and Oceans, Email: Parks and Wildlife, Defense), and some are traditional academics. We all come [email protected] together to join in the study of sound in animals, a truly interdisciplinary field of research. Micheal L. Dent Why study animal bioacoustics? The motivation for many is conservation. Many animals are vocal, and, consequently, passive listening provides a noninvasive and Postal: efficient tool to monitor population abundance, distribution, and behavior. Listen- Department of Psychology ing not only to animals but also to the sounds of the physical environment and University at Buffalo man-made sounds, all of which make up a soundscape, allows us to monitor en- The State University of New York tire ecosystems, their health, and changes over time. Industrial development often Buffalo, New York 14260 follows the principles of sustainability, which includes environmental safety, and USA bioacoustics is a tool for environmental monitoring and management.
    [Show full text]
  • Frequency Ratios and the Perception of Tone Patterns
    Psychonomic Bulletin & Review 1994, 1 (2), 191-201 Frequency ratios and the perception of tone patterns E. GLENN SCHELLENBERG University of Windsor, Windsor, Ontario, Canada and SANDRA E. TREHUB University of Toronto, Mississauga, Ontario, Canada We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted for judgments of consonance and dissonance and for judgments of similarity across a wide range of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by musically experienced and inexperienced listeners. These findings confirm the generality ofpre­ vious suggestions of perceptual processing advantages for pairs of tones related by simple fre­ quency ratios. Since the time of Pythagoras, the relative simplicity of monics of a single complex tone. Currently, the degree the frequency relations between tones has been consid­ of perceived consonance is believed to result from both ered fundamental to consonance (pleasantness) and dis­ sensory and experiential factors. Whereas sensory con­ sonance (unpleasantness) in music. Most naturally OCCUf­ sonance is constant across musical styles and cultures, mu­ ring tones (e.g., the sounds of speech or music) are sical consonance presumably results from learning what complex, consisting of multiple pure-tone (sine wave) sounds pleasant in a particular musical style. components. Terhardt (1974, 1978, 1984) has suggested Helmholtz (1885/1954) proposed that the consonance that relations between different tones may be influenced of two simultaneous complex tones is a function of the by relations between components of a single complex tone. ratio between their fundamental frequencies-the simpler For single complex tones, ineluding those of speech and the ratio, the more harmonics the tones have in common.
    [Show full text]
  • The Race of Sound: Listening, Timbre, and Vocality in African American Music
    UCLA Recent Work Title The Race of Sound: Listening, Timbre, and Vocality in African American Music Permalink https://escholarship.org/uc/item/9sn4k8dr ISBN 9780822372646 Author Eidsheim, Nina Sun Publication Date 2018-01-11 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Race of Sound Refiguring American Music A series edited by Ronald Radano, Josh Kun, and Nina Sun Eidsheim Charles McGovern, contributing editor The Race of Sound Listening, Timbre, and Vocality in African American Music Nina Sun Eidsheim Duke University Press Durham and London 2019 © 2019 Nina Sun Eidsheim All rights reserved Printed in the United States of America on acid-free paper ∞ Designed by Courtney Leigh Baker and typeset in Garamond Premier Pro by Copperline Book Services Library of Congress Cataloging-in-Publication Data Title: The race of sound : listening, timbre, and vocality in African American music / Nina Sun Eidsheim. Description: Durham : Duke University Press, 2018. | Series: Refiguring American music | Includes bibliographical references and index. Identifiers:lccn 2018022952 (print) | lccn 2018035119 (ebook) | isbn 9780822372646 (ebook) | isbn 9780822368564 (hardcover : alk. paper) | isbn 9780822368687 (pbk. : alk. paper) Subjects: lcsh: African Americans—Music—Social aspects. | Music and race—United States. | Voice culture—Social aspects— United States. | Tone color (Music)—Social aspects—United States. | Music—Social aspects—United States. | Singing—Social aspects— United States. | Anderson, Marian, 1897–1993. | Holiday, Billie, 1915–1959. | Scott, Jimmy, 1925–2014. | Vocaloid (Computer file) Classification:lcc ml3917.u6 (ebook) | lcc ml3917.u6 e35 2018 (print) | ddc 781.2/308996073—dc23 lc record available at https://lccn.loc.gov/2018022952 Cover art: Nick Cave, Soundsuit, 2017.
    [Show full text]
  • Perception of Relative Pitch with Different References: Some Absolute
    Perception & Psychophysics 1995. 57 (7). 962-970 Perception ofrelative pitch with different references: Some absolute-pitch listeners can't tell musical interval names KEN'ICHI MIYAZAKI Niigata University, Niigata, Japan 1\\'0 experiments were conducted to examine the effect of absolute-pitch possession on relative­ pitch processing. Listeners attempted to identify melodic intervals ranging from a semitone to an oc­ tave with different reference tones. Listeners with absolute pitch showed declined performance when the reference was out-of-tune C,out-of-tune E, or F#, relative to when the reference was C.In contrast, listeners who had no absolute pitch maintained relatively high performance in all reference conditions. These results suggest that absolute-pitch listeners are weak in relative-pitch processing and show a ten­ dency to rely on absolute pitch in relative-pitch tasks. One ofthe most important areas in our auditory experi­ erty and could be regarded as a medium in which tonal ence where pitch is used in a highly elaborated manner is patterns occur. music. In music ofthe tonal harmonic idiom, pitch, in as­ People who have good absolute pitch have been admired sociation with time, provides a tonal space in which as highly talented musicians. Indeed, absolute pitch may melodic and harmonic events occur in a hierarchical man­ be quite useful in musical practice, particularly when tran­ ner. Musical tones have different degrees of stability de­ scribing a heard musical passage into a musical notation or pending on the established tonal context (Lerdahl, 1988; singing a complicated melody at first sight. However, it Piston, 1987).
    [Show full text]
  • Absolute Pitch
    EXPLORING THE SELF-CONCEPT AND IDENTITY OF SYDNEY CONSERVATORIUM STUDENTS WITH AND WITHOUT ABSOLUTE PITCH. Julie O’Connor A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Music (Music Education) (Honours), Sydney Conservatorium of Music, University of Sydney. 2006 ii Abstract Absolute Pitch (AP) is the ability to identify pitches without external references (Parncutt & Levitin, 2001). It is a rare ability that is more prevalent among musicians. This qualitative study explored the perceptions of Sydney Conservatorium of Music students through interviews, focusing on the value of AP possession, and implications for music self-concept. The study involved 12 Conservatorium University and High School students; six participants were self- nominated absolute pitch possessors, and the remaining six were categorised as relative pitch (RP) users. Through discussions of the value, prevalence and practicality of AP, the data suggested that AP is a highly desirable ability among Conservatorium students, and particularly valued by those who possess it. The results also suggested that RP students tend to have less positive self-concepts in aural perception and music theory, while having more positive self-concepts in other musical arenas. The majority of the AP participants had a desire to become a solo performer, and the RP participants’ tended to plan broader musical goals such as combining teaching and ensemble performance. These results suggested that the possession of AP has had a significant effect on the identity of these individuals. iii Acknowledgements First and foremost, I would like to thank my supervisor, James Renwick, whose insightful advice (and subtle pushing) inspired and motivated me throughout the study.
    [Show full text]
  • Music and Environment: Registering Contemporary Convergences
    JOURNAL OF OF RESEARCH ONLINE MusicA JOURNALA JOURNALOF THE MUSIC OF MUSICAUSTRALIA COUNCIL OF AUSTRALIA ■ Music and Environment: Registering Contemporary Convergences Introduction H O L L I S T A Y L O R & From the ancient Greek’s harmony of the spheres (Pont 2004) to a first millennium ANDREW HURLEY Babylonian treatise on birdsong (Lambert 1970), from the thirteenth-century round ‘Sumer Is Icumen In’ to Handel’s Water Music (Suites HWV 348–50, 1717), and ■ Faculty of Arts Macquarie University from Beethoven’s Pastoral Symphony (No. 6 in F major, Op. 68, 1808) to Randy North Ryde 2109 Newman’s ‘Burn On’ (Newman 1972), musicians of all stripes have long linked ‘music’ New South Wales Australia and ‘environment’. However, this gloss fails to capture the scope of recent activity by musicians and musicologists who are engaging with topics, concepts, and issues [email protected] ■ relating to the environment. Faculty of Arts and Social Sciences University of Technology Sydney Despite musicology’s historical preoccupation with autonomy, our register of musico- PO Box 123 Broadway 2007 environmental convergences indicates that the discipline is undergoing a sea change — New South Wales one underpinned in particular by the1980s and early 1990s work of New Musicologists Australia like Joseph Kerman, Susan McClary, Lawrence Kramer, and Philip Bohlman. Their [email protected] challenges to the belief that music is essentially self-referential provoked a shift in the discipline, prompting interdisciplinary partnerships to be struck and methodologies to be rethought. Much initial activity focused on the role that politics, gender, and identity play in music.
    [Show full text]