The Cognitive Neuroscience of Music
Total Page:16
File Type:pdf, Size:1020Kb
THE COGNITIVE NEUROSCIENCE OF MUSIC Isabelle Peretz Robert J. Zatorre Editors OXFORD UNIVERSITY PRESS Zat-fm.qxd 6/5/03 11:16 PM Page i THE COGNITIVE NEUROSCIENCE OF MUSIC This page intentionally left blank THE COGNITIVE NEUROSCIENCE OF MUSIC Edited by ISABELLE PERETZ Départment de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada and ROBERT J. ZATORRE Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada 1 Zat-fm.qxd 6/5/03 11:16 PM Page iv 1 Great Clarendon Street, Oxford Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © The New York Academy of Sciences, Chapters 1–7, 9–20, and 22–8, and Oxford University Press, Chapters 8 and 21. Most of the materials in this book originally appeared in The Biological Foundations of Music, published as Volume 930 of the Annals of the New York Academy of Sciences, June 2001 (ISBN 1-57331-306-8). This book is an expanded version of the original Annals volume. The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2003 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer A catalogue record for this title is available from the British Library Library of Congress Cataloging in Publication Data (Data available) ISBN 0 19 852519 2 (Hbk) 0 19 852520 6 (Pbk) 10987654321 Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by T.J. International Ltd, Padstow Zat-fm.qxd 6/5/03 11:16 PM Page v PREFACE Over the past decade there has been an explosion in research activities on music perception and performance, and their correlates in the human brain. This sudden increase in scient- ific work on music has been motivated in part by the idea that music offers a unique oppor- tunity to better understand the organization of the human brain. The other major motivation for exploring the neural substrates of musical activities is that they may shed light on the functional origin and biological value of music. Like language, music exists in all human societies. Like language, music is a complex, rule-governed activity, and appears to be associated with a specific brain architecture. Moreover, sensitivity to musical struc- ture develops early in life, without conscious effort, in the large majority of the population. Music also appears to be specific to humans, although some investigators have begun to examine its possible evolutionary origins in other species’.1 Unlike most other high-level functions of the human brain—and unlike language—only a minority of individuals become proficient performing musicians through explicit tutor- ing. This particularity in the distribution of acquired skills confers to music a privileged role in the study of brain plasticity. Another distinction from language is that a large vari- ety of sensory-motor systems may be studied because of the many different ways of pro- ducing music. These variable modes of auditory expression enable interesting comparisons across systems. Given both its similarities with language and its divergence from it, we believe that the relationship between music and the brain is of central importance for the domain of cog- nitive neuroscience. The fact that musical activities have generally been considered as an exquisite product of human culture, and as such are often assumed to be merely a cultural artifact, should not be taken as an impediment to achieving a scientific understanding of its underlying basis. In fact, we would argue that the cultural overlay associated with music confers upon it a key role for understanding the biology of human cognitive functions. Indeed, the ubiquity of music, its developmental features, and its brain substrates raise the question of the nature and the extent of its biological foundations, and how these interact with culture. In this context, it is remarkable to note that the study of music as a major brain function has been relatively neglected. Neuropsychological questions related to musical abilities have been of occasional interest to neurologists and psychologists since the last century (e.g. Ref. 2 for pioneering work), but systematic, sustained investigations have been rare until recently. Several developments—both theoretical and technological—have created a profound change in the way in which music studies are perceived, thereby enabling us to present this volume as a beginning to the scientific study of the neurobiology of music. First, one should mention the development of cognitive psychology during the latter half of the twentieth century; cognitive psychologists were among the first to recognize the Zat-fm.qxd 6/5/03 11:16 PM Page vi vi value of music as a means of studying perception, memory, attention, and performance (see Refs 2–5 for the three benchmark textbooks). Second, neuropsychology, which had always been based on knowledge from neurophysiology and neuroanatomy, began also to adopt experimental and cognitive paradigms, permitting advances in understanding lesion effects on musical functions. Third, developmental psychologists exploited new techniques that allowed them to probe the mind of even neonates. Finally, and most dramatically per- haps with the arrival on the scene of neuroimaging techniques such as fMRI and MEG, the stage was set for the explosion to which we alluded above, and which forms the core of the present volume. The objective of the conference, from which most of the present texts are derived, was to demonstrate the dynamism and richness of the discipline. The conference was held in May 2000 in New York, and was initiated and sponsored by the New York Academy of Science. Major scientists from six different countries, working in a variety of interrelated disciplines and pursuing sustained research activities on music were invited to present their work. Most responded enthusiastically and addressed issues crucial to a better understanding of the neural substrates underlying musical functions. Their presentations first appeared in the Annals of the New York Academy of Sciences, volume 930, under the title ‘The Biological Foundations of Music’ in 2001. Given the success of this issue, Oxford University Press invited us to edit an updated version of it in their collection of books. We eagerly accepted and invited a few other major players in the field who originally presented a poster to pub- lish a full chapter in the present volume. Therefore, you will find here an updated version of the 25 original chapters as well as three new chapters. The contributions in the present volume will reveal how much progress has been made in the field over the last decade. Besides providing research overviews, many texts also delineate significant avenues for future research. Indeed, it is clear that this is a very young field still, and that much remains to be done. We hope that the material presented in this volume, coupled with an increase of interest for the biological foundations of music in the scientific and general community, represent the initial spark for building a solid and stim- ulating cognitive neuroscience of music. I.P. and R.Z. February 2003 References 1. Wallin, N., B. Merker and S. Brown (ed.) (2000) The Origins of Music. Cambridge, MA: MIT Press. 2. Bouillaud, J. (1865) Sur la faculté du langage articulé. Bulletin de l’Académie de Médecine 30, 752–68. 3. Deutsch, D. (ed.) (1982) The Psychology of Music. New York: Academic Press. 4. Dowling, W. and D. Harwood (1986) Music Cognition. Series in cognition and perception. New York. Academic Press. 5. Sloboda, J. (1985) The Musical Mind: The Cognitive Psychology of Music.London:Oxford University Press. Zat-fm.qxd 6/5/03 11:16 PM Page vii CONTENTS List of contributors page xi Part I The origins of music 1 Musical predispositions in infancy: an update page 3 Sandra E. Trehub 2 The quest for universals in temporal processing in music page 21 Carolyn Drake and Daisy Bertrand 3 Mechanisms of musical memory in infancy page 32 Jenny R. Saffran 4 Music, cognition, culture, and evolution page 42 Ian Cross 5 Is music an evolutionary adaptation? page 57 David Huron Part II The musical mind 6 The roots of musical variation in perceptual similarity and invariance page 79 Stephen McAdams and Daniel Matzkin 7 Tonal cognition page 95 Carol L. Krumhansl and Petri Toiviainen 8 Learning and perceiving musical structures: further insights from artificial neural networks page 109 Barbara Tillmann, Jamshed J. Bharucha, and Emmanuel Bigand Part III The neurons of music 9 Neurobiology of harmony perception page 127 Mark Jude Tramo, Peter A. Cariani, Bertrund Delgutte, and Louis D. Braida 10 Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of human auditory cortex page 152 Catherine Liégeois-Chauvel, Kimberly Giraud, Jean-Michel Badier, Patrick Marquis, and Patrick Chauvel Zat-fm.qxd 6/5/03 11:16 PM Page viii viii 11 The neural processing of complex sounds page 168 Timothy D.