A Simple Method of Determining Archaeoastronomical Alignments in the Field

Total Page:16

File Type:pdf, Size:1020Kb

A Simple Method of Determining Archaeoastronomical Alignments in the Field UC Merced Journal of California and Great Basin Anthropology Title A Simple Method of Determining Archaeoastronomical Alignments in the Field Permalink https://escholarship.org/uc/item/7vd4h0xw Journal Journal of California and Great Basin Anthropology, 1(1) ISSN 0191-3557 Authors Seymour, Timothy P Edberg, Stephen J Publication Date 1979-12-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California A Simple Method of Determining Archaeoastronomical Alignments in the Field TIMOTHY P. SEYMOUR STEPHEN J. EDBERG As an aid in achieving this goal, we have EDITOR'S NOTE: While it is not nor­ developed the following simplified algebraic mally our policy to publish papers of a purely expressions, derived from spherical trigo­ methodological nature, the following paper is nometry, which can be used to determine useful to archaeologists with an interest in whether or not a celestial object (such as the archaeoastronotny and can be employed in sun, moon, or particular star) of possible sig­ making observations of the type described in nificance will rise or set at a point on the the preceding paper. horizon indicated by an apparent alignment. The only field equipment required consists of ECAUSE of the recent interest on the a surveyor's transit, a book of trigonometric B part of archaeologists in the possible tables or hand calculator with trigonometric astronomical significance of various archaeo­ functions, and an inexpensive star atlas. In logical features, field archaeologists are addition, a great deal of preliminary analysis beginning to look for possible archaeoastro­ can be accomplished prior to going into the nomical alignments with ever-increasing field with nothing more complex than a topo­ vigilance. This awareness has resulted in a graphic map and a protractor. number of notable discoveries in the past Two equations are used in the calculations; several years and promises many more as one is a simplified version of the other. Which research continues. However, archaeologists equation is more appropriate will depend upon in the field face a number of problems in their the topographic conditions prevailing at the efforts to identify and describe such sites, not site. Equation (1) can be used for sites located the least of which has been their general in very flat terrain where there are no hills, unfamiliarity with mathematical astronomy. "obstructions," or depressions. These features Clearly, a means whereby the archaeologist should not exceed about 7° from the level himself could quickly calculate such align­ mathematical or astronomical horizon which ments is sorely needed. Such calculations the observer would see if the earth were a would in no way supercede field observations, smooth sphere. Equation (2) should be used but would provide a method of making those when more uneven topography must be taken observations vastly more efficient. into account. [64] DETERMINING ARCHAEOASTRONOMICAL ALIGNMENTS 65 (1) D = sin"'(cos L cos A) clockwise from true north (see Fig. la). (2) D = sin''(cos H cos A cos L + sin H sin L) H represents either the apparent height of The various letters used in the preceding any horizon obstruction such as a hill equations can be interpreted as follows: or mountain, in positive degrees, or any D is the declination (celestial latitude) of depression of the horizon below the the hypothetical heavenly object (sun, astronomical horizon, in negative moon, star) whose rising or setting degrees (see Fig. lb). point is indicated by the alignment. L is the latitude of the site. Procedures for employing the foregoing A is the azimuth direction, in degrees, equations are explained in the following the alignment is pointing, measured examples. SOLSTICE SUN?. TRUE HORIZON NORTH OBSTRUCTION (MOUNTAIN I HORIZON OBSTRUCTION ASTRONOMICAL HORIZON Fig. 1 (a & b). Hypothetical alignment showing the proper determination of the azimuth and H angles. 66 JOURNAL OF CALIFORNIA AND GREAT BASIN ANTHROPOLOGY Example 1. An archaeologist suspects that of error, we may therefore assume that a sig­ a rock feature at a site is significantly aligned nificant alignment does exist in the situation with a distant mountain peak, and hypothe­ described above. Since the sun's declination sizes that the sun may rise behind the peak on varies systematically from +23° 27' at the the morning of the summer solstice. His hypo­ summer solstice, to 0° at the equinoxes, to thesis can be quickly checked as follows. -23° 27' at the winter solstice (as the earth First, the azimuth (A) of the alignment is moves through its yearly orbit), other align­ measured with a compass or transit and found ments at other azimuth headings might be to be 63° 54'. Second, the latitude (L) of the looked for. If there were alignments to the site, taken from a USGS quad sheet, is found equinoxes or to the winter solstice, the to be 37°30'. Third, the apparent height (H) declination values given by the equation would or elevation of the mountain behind which the be D = 0° and D = -23° 27'. (Note that plus or sun is suspected to rise is measured by transit minus values indicate whether an object is and determined to be +5°. Since the horizon is above or below—i.e., north or south—of the not flat and high accuracy is desired, equation celestial equator.) (2) is selected. Substituting appropriate values into the equation gives the following results: It should be recognized that alignments that point to objects rising on the eastern D = sin-i [(cos 5°)(cos 63°540(cos 37°30') horizon may also be used to point to objects + (sin 5°)(sin 37°30')] setting in the west. In this case the azimuth of = sin-i [(0.9962)(0.4400)(0.7934) the western alignment is simply the eastern + (0.0872)(0.6088)] azimuth plus 180°. The declination of the = sini [(0.3478) + (0.0531)] setting object, in this two-way situation, would = sin' (0.4009) be the same except for a change in sign. In = +23° 38' the example just given, the declination of an The sun's declination at the time of the summer object setting in the west in line with the rock solstice is +23°27'. With a reasonable margin feature would be -23° 38' (rather than +23° 38'); / OBSTRUCTED HORIZON ACTUAL SUNRISE T H i ASTRONOMICAL THEORETICAL HORIZON SUNRISE Eastern Horizon As Viewed From The Site Fig. 2. Schematic of the rising sun showing the relationship between H and azimuth. DETERMINING ARCHAEOASTRONOMICAL ALIGNMENTS 67 this would correspond to the sun's setting posi­ would be to examine the possible association tion at the winter solstice. However, it should of nearby mountain peaks with already cata­ be noted that each declination value for the loged sites. This can be done by following the rising and setting horizon points may have to azimuth heading east or west from the site to be calculated individually if each horizon has ascertain if any Hkely topographic features lie a different elevation or H value (see Fig. 2). along this line of sight. It should be emphasized that the major All such calculations of azimuths have to source of error in these calculations will arise take into account elevation differences from an inability to determine the azimuth between the site and mountain peak. This heading of an alignment precisely. We caution value (H) can be easily determined by using the that uncertainties in the direction of a possible quad map and employing a little high school alignment will result in a range of appropriate trigonometry. declination in the sky rather than a single The difference in elevation between the mtn. value. The archaeologist must take this tan H = peak and the site (in meters). uncertainty factor (which will vary widely from The distance (in meters) between the mtn. site to site) into account when assessing the peak and the site. significance of an alignment. This simple tool can also be used to calculate Since alignments with the rising or setting reasonably accurate values for H when the solstice or equinox sun are usually the most researcher does not have access to a transit. common, it is often desirable to know in Let us now examine a situation where a advance what azimuth headings to look for in site is located in flat terrain and there are no alignments in a particular area or at a parti­ elevated features on the horizon. cular site to be examined. This can be done Example 2. The alignment of two rock before going into the field by solving equation cairns at an archaeological site is suspected to (1) or equation (2) for azimuth instead of for have astronomical (particularly solar) signifi­ declination. cance. This hypothesis can be checked as follows. The azimuth (A) is measured as (la) A = cos '/sin D\ or 52°03', while the latitude (L) is the same as in \cos L/ example 1 (37° 30'). Substituting appropriate (2a) A = COS" sin D (sin H sin L)[ values into the equation gives the following [ cos H cos L J results: This will provide a quickly calculated estitnate D = sin-' (cos 37°30')(cos 52°03') of the pointing direction of any possible align­ = sin-i (0.7934X0.5299) ments. Once in the field, any such orientations = sin' (0.4879) can be precisely measured and calculated using = +29° 12' the formal method given. Such prior calculations of likely azimuth Since the sun is never farther north than headings have a number of possible applica­ +23°27', this alignment clearly has no solar tions. They might conceivably be used to significance. However, the moon varies cycli­ locate solstice sites associated with prominent cally in declination between about +29° and mountain peaks by following the predicted -29°.
Recommended publications
  • Occuttau'm@Newsteuer
    Occuttau'm@Newsteuer Volume IV, Number 3 january, 1987 ISSN 0737-6766 Occultation Newsletter is published by the International Occultation Timing Association. Editor and compos- itor: H. F. DaBo11; 6N106 White Oak Lane; St. Charles, IL 60174; U.S.A. Please send editorial matters, new and renewal memberships and subscriptions, back issue requests, address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to the above. FROM THE PUBLISHER IOTA NEWS This is the first issue of 1987. Some reductions in David Id. Dunham prices of back issues are shown below. The main purpose of this issue is to distribute pre- dictions and charts for planetary and asteroidal oc- When renewing, please give your name and address exactly as they ap- pear on your mailing label, so that we can locate your file; if the cultations that occur during at least the first part label should be revised, tell us how it should be changed. of 1987. As explained in the article about these If you wish, you may use your VISA or NsterCard for payments to IOTA; events starting on p. 41, the production of this ma- include the account number, the expiration date, and your signature. terial was delayed by successful efforts to improve Card users must pay the full prices. If paying by cash, check, or the prediction system and various year-end pres- money order, please pay only the discount prices. Full Discount sures, including the distribution o"' lunar grazing price price occultation predictions. Unfortunately, this issue IOTA membership dues (incl.
    [Show full text]
  • Burial Mounds in Europe and Japan Comparative and Contextual Perspectives
    Comparative and Global Perspectives on Japanese Archaeology Burial Mounds in Europe and Japan Comparative and Contextual Perspectives edited by Access Thomas Knopf, Werner Steinhaus and Shin’ya FUKUNAGAOpen Archaeopress Archaeopress Archaeology © Archaeopress and the authors, 2018. Archaeopress Publishing Ltd Summertown Pavilion 18-24 Middle Way Summertown Oxford OX2 7LG www.archaeopress.com ISBN 978 1 78969 007 1 ISBN 978 1 78969 008 8 (e-Pdf) © Archaeopress and the authors 2018 © All image rights are secured by the authors (Figures edited by Werner Steinhaus) Access Cover illustrations: Mori-shōgunzuka mounded tomb located in Chikuma-shi in Nagano prefecture, Japan, by Werner Steinhaus (above) Magdalenenberg burial mound at Villingen-Schwenningen, Germany,Open by Thomas Knopf (below) The printing of this book wasArchaeopress financed by the Sainsbury Institute for the Study of Japanese Arts and Cultures All rights reserved. No part of this book may be reproduced, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copyright owners. Printed in England by Oxuniprint, Oxford This book is available direct from Archaeopress or from our website www.archaeopress.com © Archaeopress and the authors, 2018. Contents List of Figures .................................................................................................................................................................................... iii List of authors .................................................................................................................................................................................
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Dress and Cultural Difference in Early Modern Europe European History Yearbook Jahrbuch Für Europäische Geschichte
    Dress and Cultural Difference in Early Modern Europe European History Yearbook Jahrbuch für Europäische Geschichte Edited by Johannes Paulmann in cooperation with Markus Friedrich and Nick Stargardt Volume 20 Dress and Cultural Difference in Early Modern Europe Edited by Cornelia Aust, Denise Klein, and Thomas Weller Edited at Leibniz-Institut für Europäische Geschichte by Johannes Paulmann in cooperation with Markus Friedrich and Nick Stargardt Founding Editor: Heinz Duchhardt ISBN 978-3-11-063204-0 e-ISBN (PDF) 978-3-11-063594-2 e-ISBN (EPUB) 978-3-11-063238-5 ISSN 1616-6485 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 04. International License. For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/. Library of Congress Control Number:2019944682 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2019 Walter de Gruyter GmbH, Berlin/Boston The book is published in open access at www.degruyter.com. Typesetting: Integra Software Services Pvt. Ltd. Printing and Binding: CPI books GmbH, Leck Cover image: Eustaţie Altini: Portrait of a woman, 1813–1815 © National Museum of Art, Bucharest www.degruyter.com Contents Cornelia Aust, Denise Klein, and Thomas Weller Introduction 1 Gabriel Guarino “The Antipathy between French and Spaniards”: Dress, Gender, and Identity in the Court Society of Early Modern
    [Show full text]
  • College of San Mateo Observatory Stellar Spectra Catalog ______
    College of San Mateo Observatory Stellar Spectra Catalog SGS Spectrograph Spectra taken from CSM observatory using SBIG Self Guiding Spectrograph (SGS) ___________________________________________________ A work in progress compiled by faculty, staff, and students. Stellar Spectroscopy Stars are divided into different spectral types, which result from varying atomic-level activity on the star, due to its surface temperature. In spectroscopy, we measure this activity via a spectrograph/CCD combination, attached to a moderately sized telescope. The resultant data are converted to graphical format for further analysis. The main spectral types are characterized by the letters O,B,A,F,G,K, & M. Stars of O type are the hottest, as well as the rarest. Stars of M type are the coolest, and by far, the most abundant. Each spectral type is also divided into ten subtypes, ranging from 0 to 9, further delineating temperature differences. Type Temperature Color O 30,000 - 60,000 K Blue B 10,000 - 30,000 K Blue-white A 7,500 - 10,000 K White F 6,000 - 7,500 K Yellow-white G 5,000 - 6,000 K Yellow K 3,500 - 5,000 K Yellow-orange M >3,500 K Red Class Spectral Lines O -Weak neutral and ionized Helium, weak Hydrogen, a relatively smooth continuum with very few absorption lines B -Weak neutral Helium, stronger Hydrogen, an otherwise relatively smooth continuum A -No Helium, very strong Hydrogen, weak CaII, the continuum is less smooth because of weak ionized metal lines F -Strong Hydrogen, strong CaII, weak NaI, G-band, the continuum is rougher because of many ionized metal lines G -Weaker Hydrogen, strong CaII, stronger NaI, many ionized and neutral metals, G-band is present K -Very weak Hydrogen, strong CaII, strong NaI and many metals G- band is present M -Strong TiO molecular bands, strongest NaI, weak CaII very weak Hydrogen absorption.
    [Show full text]
  • Frankfurt Pleiades Star Map 2
    FRANKFURT PLEIADES STAR MAP 2 In investigating the Martian connection of the Pleiadian pattern of Frankfurt, one cannot avoid to address the origins at least in the propagation of this motif in the modern era and in all the financial powerhouses of today’s World Financial Oder. This is in part the Pleiades conspiracy as this modern version of the ‘Pleiadian Conspiracy’ started here in Frankfurt with the Rothschild dynasty by Amschel Moses Bauer, 1743. This critique is not meant to placate all those of the said family or those that work in such financial structures or businesses and specifically not those in Frankfurt. However the argument is that those behind the family apparatus are of a cabal that is connected to the allegiance of not the true GOD of the Universe, YHVH but to the false usurper Lucifer. It is Lucifer they worship and venerate as the ‘god of this world’ and is the God of Mammon according to Jesus’ assessment. According to research and especially based on The 13 Bloodlines of the Illuminati by Springmeier, the current financial domination of the world began in Frankfurt with Mayer Amschel. They were of Jewish extract but adhere more toward the Kabbalistic, Zohar, and ancient Babylonian secret mystery religion initiated by Nimrod after the Flood of Noah. The star Taygete corresponds to the Literaturahaus building. T he star Celaena corresponds to the Burgenamt Zentrales building. The star Merope corresponds to the area of the Timmitus und THE PLEIADES Hyperakusis Center. The star Alcyone corresponds to the Oper FINANCIAL DISTRICT The Bearing-Point building is Frankfurt or the Opera House.
    [Show full text]
  • Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau
    International Journal of Astronomy and Astrophysics, 2019, 9, 321-334 http://www.scirp.org/journal/ijaa ISSN Online: 2161-4725 ISSN Print: 2161-4717 Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau Hinako Akimoto, Yoichi Itoh Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Hyogo, Japan How to cite this paper: Akimoto, H. and Abstract Itoh, Y. (2019) Optical Spectroscopic Mon- itoring Observations of a T Tauri Star V409 We report the results of optical spectroscopic monitoring observations of a T Tau. International Journal of Astronomy Tauri star, V409 Tau. A previous photometric study indicated that this star and Astrophysics, 9, 321-334. experienced dimming events due to the obscuration of light from the central https://doi.org/10.4236/ijaa.2019.93023 star with a distorted circumstellar disk. We conducted medium-resolution (R Received: July 24, 2019 ~10,000) spectroscopic observations with 2-m Nayuta telescope at Ni- Accepted: September 16, 2019 shi-Harima Astronomical Observatory. Spectra were obtained in 18 nights Published: September 19, 2019 between November 2015 and March 2016. Several absorption lines such as Ca Copyright © 2019 by author(s) and I and Li, and the Hα emission line were confirmed in the spectra. The Ic-band Scientific Research Publishing Inc. magnitudes of V409 Tau changed by approximately 1 magnitude during the This work is licensed under the Creative observation epoch. The equivalent widths of the five absorption lines are Commons Attribution International License (CC BY 4.0). roughly constant despite changes in the Ic-band magnitudes. We conclude http://creativecommons.org/licenses/by/4.0/ that the light variation of the star is caused by the obscuration of light from Open Access the central star with a distorted circumstellar disk, based on the relationship between the equivalent widths of the absorption lines and the Ic-band magni- tudes.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • The Photosphere and Circumstellar Environment of the Be Star Achernar
    New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry Proceedings IAU Symposium No. 307, 2014 c International Astronomical Union 2015 G.Meynet,C.Georgy,J.H.Groh&Ph.Stee,eds. doi:10.1017/S1743921314006905 The photosphere and circumstellar environment of the Be star Achernar Daniel M. Faes1,2, Armando Domiciano de Souza2,AlexC.Carciofi1 and Philippe Bendjoya2 1 Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas, Universidade de S˜ao Paulo, Rua do Mat˜ao 1226, Cidade Universit´aria, 05508-900, S˜ao Paulo, SP, Brazil email: [email protected] 2 Lab. J.-L. Lagrange, UMR 7293 - Observatoire de la Cˆote d’Azur (OCA), Univ. de Nice-Sophia Antipolis (UNS), CNRS, Valrose, 06108 Nice, France Abstract. Achernar is a key target to investigate high stellar rotation and the Be phenonemon. It is also the hottest star for which detailed photospheric information is available. Here we report our results to determine the photospheric parameters of Achernar and evaluate how the emission of a Viscous Decretion Disk (VDD) around it would be observable. The analysis is based on interferometric data (PIONIER and AMBER at ESO-VLTI), complemented by spectroscopy and polarimetry for the circumstellar emission. For the first time fundamental parameters of a Be photosphere were determined. The presence of a residual disk at the quiescent phase and some characteristics of the new formed disk (2013 activity) are also discussed. This is rare opportunity to precisely determine the stellar brightness distribution and evaluate the evolution of a just formed Be disk. Keywords. stars: individual (Achernar), stars: fundamental parameters, techniques: interfero- metric, circumstellar matter, stars: emission-line, Be 1.
    [Show full text]