Propionibacterium Freudenreichii Flavia Figueira Aburjaile

Total Page:16

File Type:pdf, Size:1020Kb

Propionibacterium Freudenreichii Flavia Figueira Aburjaile Mécanismes moléculaires de la survie à long terme chez Propionibacterium freudenreichii Flavia Figueira Aburjaile To cite this version: Flavia Figueira Aburjaile. Mécanismes moléculaires de la survie à long terme chez Propionibac- terium freudenreichii. Alimentation et Nutrition. Agrocampus Ouest, 2015. Français. NNT : 2015NSARB273. tel-01697901v2 HAL Id: tel-01697901 https://tel.archives-ouvertes.fr/tel-01697901v2 Submitted on 1 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RÉSUMÉ ABSTRACT Mécanismes moléculaires de la survie à long terme chez Propioni- Molecular mechanisms of long-term survival in Propionibacterium bacterium freudenreichii freudenreichii Propionibacterium freudenreichii est une bactérie très utili- Propionibacterium freudenreichii is a dairy bacterium belonging sée par l’industrie laitière. Elle appartient aux Actinomycètes to the Actinobacteria group, which is known to survive for long connus pour leur survie pendant de longues périodes, dans periods in harsh environmental conditions. In order to investi- des conditions environnementales défavorables. Pour mieux gate the long-term survival phenomenon in P. freudenreichii, comprendre ce phénomène, la caractérisation phénotypique 8 strains were phenotypically characterized for a period of 11 de 8 souches de P. freudenreichii a été réalisée sur 11 jours days in nutrient shortage condition. Bacterial survival rate was dans un milieu en carence nutritionnelle. Le taux de survie assessed by optical density, CFU counting and live-dead cellular bactérienne a été mesuré par densité optique, par énuméra- viability. In addition, the absence of cell lysis was evaluated by tion et évaluation de la viabilité cellulaire. En outre, l’absence quantitative PCR. P. freudenreichii growth phases were classifi ed de lyse cellulaire a été évaluée par PCR quantitative. La crois- as exponential, stationary, late stationary and long-term survival. sance de P. freudenreichii a été décrite en phases exponen- Moreover, it was observed that bacterial viability was maintained tielle, stationnaire, stationnaire tardive et survie à long terme. during long-term survival. Phenotypical characterization indica- Dans nos conditions expérimentales pendant la période de ted that P. freudenreichii CIRM-BIA138 was more resistant to survie à long terme, les bactéries sont restées viables. La nutrient shortage being able to enter into a viable but noncultu- freudenreichii Propionibacterium caractérisation phénotypique a montré que P. freudenreichii rable dormant state. In addition, functional studies of this strain CIRM-BIA138 était la plus résistante à la carence nutrition- were conducted by RNA-Seq on cultures sampled in exponential nelle et entrait dans un état viable mais non-cultivable. Cette and stationary growth phases. Concomitantly, several bioche- souche a été utilisée pour une étude fonctionnelle par RNA- mical analyses were carried out on the culture supernatant. An Seq ainsi que pour des analyses biochimiques sur les surna- integrative approach of metabolomic and transcriptomic data geants de culture, en phases exponentielle et stationnaire. allowed us to infer strategies associated with the survival of this L’association de ces données transcriptomiques et métabolo- bacterium, such as preparation for the dormant state, slow down miques a permis de déduire les stratégies impliquées dans la of metabolic activity and utilization of alternative sources of ener- survie de cette bactérie. La préparation à l’état de dormance, gy, which altogether might allow P. freudenreichiiCIRM-BIA 138 la diminution du métabolisme et l’utilisation de sources alter- to adapt and persist through nutrient shortage for long periods. natives d’énergie semblent impliquées dans l’adaptation et la persistence de P. freudenreichii CIRM-BIA138 en carence nutritionnelle durant de longues périodes. Mots-clés : P. freudenreichii, survie à long terme, RNA-Seq, Keywords: Propionibacterium freudenreichii, long-term survival, métabolome, VBNC. RNA-Seq, metabolomics, viable but nonculturable. Flavia FIGUEIRA ABURJAILE • 9 décembre 2015 Thèse AGROCAMPUS OUEST ÉCOLE DOCTORALE • Vie-Agro-Santé (VAS) sous le label de l’Université Européenne de Bretagnepour pour LABORATOIRE D’ACCUEIL • UMR 1253 INRA - AGROCAMPUS obtenir le titre de OUEST Science et Technologie du Lait et de l’Œuf (STLO) DOCTEUR D’AGROCAMPUS OUEST THÈSE EN COTUTELLE • UFMG, Belo Horizonte, Brasil Spécialité Biochimie, Biologie moléculaire et cellulaire Mécanismes moléculaires de la survie chez à long terme Michel GAUTIER lavia Mécanismes moléculaires Professeur, AGROCAMPUS OUEST, UMR INRA AO STLO / AGROCAMPUS OUEST Institut supérieur des sciences agronomiques, • président agroalimentaires, horticoles et du paysage de la survie à long terme chez 65 rue de Saint-Brieuc – CS84215 – F-35042 Rennes Cedex Muriel COCAIGN-BOUSQUET Tél. : 02 23 48 50 00 Directrice de recherche, INRA Toulouse / rapporteur FIGUEIRA F Propionibacterium freudenreichii www.agrocampus-ouest.fr Artur SILVA • Professeur, université fédérale de Parà, Brésil / rapporteur Marie-France PILET 2015-28 Maître de conférences, ONIRIS, Nantes / examinatrice — Vasco Ariston de CARVALHO AZEVEDO Professeur, UFMG Belo Horizonte, Brésil / directeur de thèse B-273 Yves LE LOIR Directeur de recherche, UMR INRA-AO STLO / directeur de thèse Thèse Thèse Hélène FALENTIN Ingénieure de recherche, UMR INRA-AO STLO / co encadrante INRA 2012 THESE / AGROCAMPUS OUEST Sous le label de l’Université Européenne de Bretagne pour obtenir le diplôme de : DOCTEUR DE L'INSTITUT SUPERIEUR DES SCIENCES AGRONOMIQUES, AGRO-ALIMENTAIRES, HORTICOLES ET DU PAYSAGE Spécialité : Spécialité Biochimie, Biologie moléculaire et cellulaire Ecole Doctorale : « Vie Agro Santé » présentée par : Flavia Figueira Aburjaile Mécanismes moléculaires de la survie à long terme chez Propionibacterium freudenreichii soutenue le 9 décembre 2015 devant la commission d’Examen Composition du jury : Rapporteurs : Muriel Cocaign-Bousquet (Directrice de recherche, INRA, Toulouse, France) Artur Silva (Professeur, UFPA, Belém, Brésil) Membres : Marie-France Pilet (Maître de conférences, ONIRIS, Nantes; Examinatrice) Michel Gautier (Professeur, AGROCAMPUS OUEST, Rennes, France; Président) Directeurs de Thèse : Vasco Ariston de Carvalho Azevedo (Professeur, UFMG, Belo Horizonte, Brésil) Yves Le Loir (Directeur de recherche, INRA, Rennes, France) Co-encadrante de Thèse : Hélène Falentin (Ingénieur de recherche, INRA, Rennes, France) UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA INTERUNIDADES DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA Tese Mecanismos moleculares de sobrevivência em longo prazo em Propionibacterium freudenreichii Orientada: Flavia Figueira Aburjaile Orientadores: Prof. Dr. Vasco Ariston de Carvalho Azevedo Dr. Yves Le Loir Rennes 2015 2 Flavia Figueira Aburjaile Mecanismos moleculares de sobrevivência em longo prazo em Propionibacterium freudenreichii Tese apresentada ao Programa Interunidades de Pós-Graduação em Bioinformática da Universidade Federal de Minas Gerais, como requisito parcial para obtenção do título de Doutor em Bioinformática. Orientadores: Prof. Dr. Vasco Azevedo Dr. Yves Le Loir Rennes 2015 3 “Foi o tempo que dedicaste à tua rosa que a fez tão importante”. « C'est le temps que tu as perdu pour ta rose qui fait ta rose si importante ». Antoine de Saint-Exupéry 4 AGRADECIMENTOS - Agradeço a Deus por ter me dado persistência e determinação durante estes quatro anos de trabalho seguindo em frente com os meus objetivos e não desanimando com as dificuldades; - Ao meu orientador brasileiro, Vasco Azevedo, por todo o aprendizado e ensinamento durante estes anos; - Ao meu orientador francês, Yves Le Loir, pelo recebimento em seu Instituto de Pesquisa; - Aos membros da banca pela disponibilidade em avaliarem este trabalho de Tese; - A Hélène Falentin e aos membros do INRA de Rennes, pela ajuda e disponibilidade; - A Anne Pinto por todo o acolhimento, paciência e ajuda durante a redação da Tese; - Paulette e Jessica, técnicas, pela preparação de todos os meios de cultura e de materiais essenciais utilizados nos experimentos; - À Pós-graduação em Bioinformática, por todo o suporte na parte administrativa do processo desde o início da seleção de doutorado; - As agências de fomento CNPq, CAPES e CAPES-COFECUB pelo auxílio financeiro concedido no Brasil e na França durante este período de Tese; - A todos os “LGCMistas”, pelos aprendizados dentro e fora do laboratório, pelas amizades e pelas conquistas. Não vou descrever nomes, pois vocês todos são muito especiais! - Aos meus colegas e amigos que fiz durante a minha caminhada em Rennes, estrangeiros e brasileiros, aos laços que se criaram e que continuarão, com certeza, nos próximos anos. E a frase que resume toda esta trajetória, está em meu livro favorito, O pequeno príncipe: “Tu te tornas eternamente responsável por aquilo que cativas (Antoine de Saint-Exupéry)”; - Aos meus queridos amigos e amigas de infância, de colégio, de faculdade e de estágio, que me apoiaram em todos
Recommended publications
  • Complete Genomic Sequences of Propionibacterium Freudenreichii
    UCLA UCLA Previously Published Works Title Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. Permalink https://escholarship.org/uc/item/7bf0f2q3 Journal BMC microbiology, 18(1) ISSN 1471-2180 Authors Cheng, Lucy Marinelli, Laura J Grosset, Noël et al. Publication Date 2018-03-01 DOI 10.1186/s12866-018-1159-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cheng et al. BMC Microbiology (2018) 18:19 https://doi.org/10.1186/s12866-018-1159-y RESEARCH ARTICLE Open Access Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages Lucy Cheng1,2†, Laura J. Marinelli1,2*†, Noël Grosset3, Sorel T. Fitz-Gibbon4, Charles A. Bowman5, Brian Q. Dang5, Daniel A. Russell5, Deborah Jacobs-Sera5, Baochen Shi6, Matteo Pellegrini4, Jeff F. Miller7,2, Michel Gautier3, Graham F. Hatfull5 and Robert L. Modlin1,2 Abstract Background: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. Results: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences.
    [Show full text]
  • The Human Milk Microbiome and Factors Influencing Its
    1 THE HUMAN MILK MICROBIOME AND FACTORS INFLUENCING ITS 2 COMPOSITION AND ACTIVITY 3 4 5 Carlos Gomez-Gallego, Ph. D. ([email protected])1; Izaskun Garcia-Mantrana, Ph. D. 6 ([email protected])2, Seppo Salminen, Prof. Ph. D. ([email protected])1, María Carmen 7 Collado, Ph. D. ([email protected])1,2,* 8 9 1. Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4 A, 10 20014, Turku, Finland. Phone: +358 2 333 6821. 11 2. Institute of Agrochemistry and Food Technology, National Research Council (IATA- 12 CSIC), Department of Biotechnology. Valencia, Spain. Phone: +34 96 390 00 22 13 14 15 *To whom correspondence should be addressed. 16 -IATA-CSIC, Av. Agustin Escardino 7, 49860, Paterna, Valencia, Spain. Tel. +34 963900022; 17 E-mail: [email protected] 18 19 20 21 22 23 24 25 26 27 1 1 SUMMARY 2 Beyond its nutritional aspects, human milk contains several bioactive compounds, such as 3 microbes, oligosaccharides, and other substances, which are involved in host-microbe 4 interactions and have a key role in infant health. New techniques have increased our 5 understanding of milk microbiota composition, but little data on the activity of bioactive 6 compounds and their biological role in infants is available. While the human milk microbiome 7 may be influenced by specific factors, including genetics, maternal health and nutrition, mode of 8 delivery, breastfeeding, lactation stage, and geographic location, the impact of these factors on 9 the infant microbiome is not yet known. This article gives an overview of milk microbiota 10 composition and activity, including factors influencing microbial composition and their 11 potential biological relevance on infants' future health.
    [Show full text]
  • Molecular Models for Shikimate Pathway Enzymes of Xylella Fastidiosa
    BBRC Biochemical and Biophysical Research Communications 320 (2004) 979–991 www.elsevier.com/locate/ybbrc Molecular models for shikimate pathway enzymes of Xylella fastidiosa Helen Andrade Arcuri,a,1 Fernanda Canduri,a,d,1 Jose Henrique Pereira,a Nelson Jose Freitas da Silveira,a Joao~ Carlos Camera Jr.,a Jaim Simoes~ de Oliveira,b Luiz Augusto Basso,b Mario Sergio Palma,c,d Diogenes Santiago Santos,e,* and Walter Filgueira de Azevedo Jr.a,d,* a Department of Physics IBILCE/UNESP, S~ao Jose do Rio Preto, SP 15054-000, Brazil b Rede Brasileira de Pesquisas em Tuberculose, Department of Molecular Biology and Biotecnology, UFRGS, Porto Alegre, RS 91501-970, Brazil c Laboratory of Structural Biology and Zoochemistry, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil d Center for Applied Toxicology, Institute Butantan, S~ao Paulo, SP 05503-900, Brazil e Center for Research and Development in Molecular, Structural and Functional Molecular Biology, PUCRS 90619-900, Porto Alegre, RS, Brazil Received 25 May 2004 Available online 25 June 2004 Abstract The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for HM-8 Propionibacterium acidifaciens, Oral Taxon Growth Conditions: 191, Strain F0233 Media: Modified Reinforced Clostridial Broth (ATCC® medium 2107) or equivalent Catalog No. HM-8 Tryptic Soy Agar with 5% defibrinated sheep blood or equivalent For research use only. Not for human use. Incubation: Temperature: 37°C Contributor: Atmosphere: Anaerobic (80% N2:10% CO2:10% H2) Jacques Izard, Assistant Member of the Staff, Department of Propagation: Molecular Genetics, The Forsyth Institute, Boston, 1. Keep vial frozen until ready for use, then thaw. Massachusetts 2. Transfer the entire thawed aliquot into a single tube of broth. Manufacturer: 3. Use several drops of the suspension to inoculate an BEI Resources agar slant and/or plate. 4. Incubate the tube, slant and/or plate at 37°C for 48 to Product Description: 72 hours. Bacteria Classification: Propionibacteriaceae, Propionibacterium Citation: Species: Propionibacterium acidifaciens Acknowledgment for publications should read “The following Subtaxon: Oral Taxon 191 reagent was obtained through BEI Resources, NIAID, NIH as Strain: F0233 part of the Human Microbiome Project: Propionibacterium Original Source: Propionibacterium acidifaciens (P. acidifaciens, Oral Taxon 191, Strain F0233, HM-8.” acidifaciens), Oral Taxon 191, strain F0233 was isolated in March 1983 from the subgingival plaque of a 53-year-old Biosafety Level: 2 black male patient with moderate periodontitis.1,2 Appropriate safety procedures should always be used with Comments: P. acidifaciens, Oral Taxon 191, strain F0233 this material. Laboratory safety is discussed in the following (HMP ID 0682) is a reference genome for The Human publication: U.S. Department of Health and Human Microbiome Project (HMP).
    [Show full text]
  • United States Patent (19) (11 Patent Number: 4,971,908 Kishore Et Al
    United States Patent (19) (11 Patent Number: 4,971,908 Kishore et al. 45 Date of Patent: Nov. 20, 1990 54 GLYPHOSATE-TOLERANT 56 References Cited 5-ENOLPYRUVYL-3-PHOSPHOSHKMATE U.S. PATENT DOCUMENTS SYNTHASE 4,769,061 9/1988 Comai ..................................... 71/86 (75. Inventors: Ganesh M. Kishore, Chesterfield; Primary Examiner-Robin Teskin Dilip M. Shah, Creve Coeur, both of Assistant Examiner-S. L. Nolan Mo. Attorney, Agent, or Firm-Dennis R. Hoerner, Jr.; 73 Assignee: Monsanto Company, St. Louis, Mo. Howard C. Stanley; Thomas P. McBride (21) Appl. No.: 179,245 57 ABSTRACT Glyphosate-tolerant 5-enolpyruvyl-3-phosphosikimate 22 Filed: Apr. 22, 1988 (EPSP) synthases, DNA encoding glyhphosate-tolerant EPSP synthases, plant genes encoding the glyphosate Related U.S. Application Data tolerant enzymes, plant transformation vectors contain ing the genes, transformed plant cells and differentiated 63 Continuation-in-part of Ser. No. 54,337, May 26, 1987, transformed plants containing the plant genes are dis abandoned. closed. The glyphosate-tolerant EPSP synthases are 51) Int. Cl. ....................... C12N 15/00; C12N 9/10; prepared by substituting an alanine residue for a glycine CO7H 21/04 residue in a conserved sequence found between posi 52 U.S. C. .............................. 435/172.1; 435/172.3; tions 80 and 120 in the mature wild-type EPSP syn 435/193; 536/27; 935/14 thase. 58) Field of Search............... 435/172.3, 193; 935/14, 935/67, 64 15 Claims, 14 Drawing Sheets U.S. Patent Nov. 20, 1990 Sheet 3 of 14 4,971,908 1. 50 Yeast . .TVYPFK DIPADQQKVV IPPGSKSSN RALITAATGE GQCKIKNLLH Aspergillus .
    [Show full text]
  • Lllllllllllllllllillllllllllllllilllllllllillllillllllllllll
    lllllllllllllllllIllllllllllllllIlllllllllIllllIllllllllllllllllllIllllllll U USOO53 10667A Umted States Patent [19] [11] Patent Number: 5,310,667 Eichholtz et a1. [45] Date of Patent: May 10, 1994 [54] GLYPHOSATE-TOLERANT 5-ENOLPYRUVYL-3-PHOSPHOSHIKIMATE OTHER PUBLICATIONS SYNTHASES Botterman et a1. (Aug. 1988) Trends in Genetics 4:219-222. [75] Inventors: David A_ Eichholtz, St Louis; Dassarma et al. (1986) Science 232:1242-1244. Charles S_ Gasser; Ganesh M_ Oxtoby et al. (1989) Euphytiza 40:173-180. Kishore, both of Chesterfield, an of Sezel, Enzyme Kineties, Behavior and Analysis of Rapid Mo_ Equilibrium and Steady State Enzyme System, John Wiley and Sons, New York, 1975, p. 15. [73] Assignee: Monsanto Company, St. Louis, Mo. Primary Examiner—Che S. Chereskiin Attorney, Agent, or Firm-Dennis R. Hoemer, Jr.; [21] Appl. No.: 380,963 RiChard H- Shear [57] ABSTRACT [22] Filed: Jul- 17’ 1989 Glyphosate-tolerant 5-enolpyruvy1-3-phosphoshikimate (EPSP) synthases, DNA encoding glyphosate-tolerant [51] Int. Cl.5 .................... .. C12N 15/01; C12N 15/29; EPSP synthases, plant genes encoding the glyphosate C12N 15/32 tolerant enzymes, plant transformation vectors contain [52] US. Cl. .............................. .. 435/ 172.3; 435/691; ing the genes, transformed plant cells and differentiated 800/205; 935/30; 935/35; 935/64; 536/236; transformed plants containing the plant genes are dis 536/23.7 closed. The glyphosate-tolerant EPSP synthases are [58] Field of Search ................... .. 435/68, 172.3, 69.1; prepared by substituting an alanine residue for a glycine 935/30, 35, 64, 67; 71/86, 113, 121; 530/370, residue in a ?rst conserved sequence found between 350; 800/205; 536/236, 23.7 positions 80 and 120, and either an aspartic acid residue ‘ or asparagine residue for a glycine residue in a second [56] References Cited conserved sequence found between positions 120 and 160 in the mature wild type EPSP synthase.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Food Microbial Ecology - Eugenia Bezirtzoglou
    MEDICAL SCIENCES - Food Microbial Ecology - Eugenia Bezirtzoglou FOOD MICROBIAL ECOLOGY Eugenia Bezirtzoglou, Democritus University of Thrace, Faculty of Agricultural Development, Department of Food Science and Technology, Laboratory of Microbiology, Biotechnology and Hygiene and Laboratory of food Processing, Orestiada, Greece Keywords: Food, Microbial Ecology Contents 1. Scope of Microbial Ecology 2. Food Microbial Ecosystem 3. Diversity of Habitat 4. Factors influencing the Growth and Survival of Microorganisms in Foods 5. Food Spoilage and its Microbiology 6. Fermented and Microbial Foods 7. Conclusions Related Chapters Glossary Bibliography Biographical Sketch Summary Microbial ecology is the study of microorganisms in their proper environment and their interactions with it. Microbial ecology can give us answers about our origin, our place in the earth ecosystem as well as on our connection to the great diversity of all other organisms. In this vein, studying microbial ecology questions should help to explain the role of microbes in the environment, in food production, in bioengineering and chemicals items and as result will improve our lives. There is a plethora of microorganisms on our planet, most microorganisms remain unknown. It is estimated that we have knowledge only of 1% of the microbial species on Earth. Multiple studies in intestinal ecology have been greatly hampered by the inaccuracy and limitations of culture methods. Many bacteria are difficult to culture or are unculturable, and often media are not truly specific or are too selective for certain bacteria. Furthermore it is impossible to study and compare complete ecosystems, as they exist in the human body, by culturing methods. Molecular tools introduced in microbial ecology made it possible to study the composition of the microecosystems in a different way, which is not dependent on culture techniques.
    [Show full text]
  • Architecture Génétique Des Caractères Cibles Pour La Culture Du Peuplier En Taillis À Courte Rotation Redouane El Malki
    Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation Redouane El Malki To cite this version: Redouane El Malki. Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation. Sciences agricoles. Université d’Orléans, 2013. Français. NNT : 2013ORLE2005. tel-00859626 HAL Id: tel-00859626 https://tel.archives-ouvertes.fr/tel-00859626 Submitted on 9 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DORLÉANS ÉCOLE DOCTORALE SANTE, SCIENCES BIOLOGIQUES ET CHIMIE DU VIVANT Unité de recherche Amélioration Génétique et Physiologie Forestières THÈSE présentée par : Redouane EL MALKI Soutenue le : 21 janvier 2013 pour obtenir le grade de : Docteur de luniversité dOrléans Discipline/ Spécialité : Biologie Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation THÈSE dirigée par : Catherine BASTIEN Directrice de Recherche, INRA dOrléans RAPPORTEURS : Yves BARRIERE Directeur de Recherche, INRA de Lusignan Daniel
    [Show full text]
  • Translocation of the Precursor of 5-Enolpyruvylshikimate-3
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 6873-6877, September 1986 Cell Biology Translocation of the precursor of 5-enolpyruvylshikimate-3- phosphate synthase into chloroplasts of higher plants in vitro (shikimate pathway/transit peptide/glyphosate) GUY DELLA-CIOPPA*, S. CHRISTOPHER BAUER, BARBARA K. KLEIN, DILIP M. SHAH, ROBERT T. FRALEY, AND GANESH M. KISHORE Monsanto Company, Plant Molecular Biology Group, Division of Biological Sciences, 700 Chesterfield Village Parkway, St. Louis, MO 63198 Communicated by Esmond E. Snell, June 16, 1986 ABSTRACT 5-enolPyruvylshikimate-3-phosphate syn- transferase; EC 2.5.1.19) catalyzes the transfer of the thase (EPSP synthase; 3-phosphoshikimate 1-carboxyvinyl- carboxyvinyl moiety of phosphoenolpyruvate (P-ePrv) to transferase; EC 2.5.1.19) is a chloroplast-localized enzyme of shikimate-3-phosphate yielding EPSP and inorganic phos- the shikimate pathway in plants. This enzyme is the target for phate. EPSP synthase is an intermediate in the shikimate the nonselective herbicide glyphosate (N-phosphonomethyl- pathway that gives rise to the aromatic amino acids L- glycine). We have previously isolated a full-length cDNA clone phenylalanine, L-tyrosine, and L-tryptophan (8). In addition ofEPSP synthase from Petunia hybrida. DNA sequence analysis to the biosynthesis of these amino acids, the shikimate suggested that the enzyme is synthesized as a cytosolic precur- pathway is utilized for the production of p-amino- and sor (pre-EPSP synthase) with an amino-terminal transit, pep- p-hydroxybenzoic acids, and a variety of other natural plant tide. Based on the known amino terminus of the mature products (8). The biosynthesis of aromatic amino acids has enzyme, and the 5' open reading frame ofthe cDNA, the transit been shown to occur in isolated chloroplasts in vitro (9), and peptide of pre-EPSP synthase would be maximally 12 amino shikimate-pathway enzymes (including EPSP synthase) have acids long.
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae C.-M
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1991, p. 1799-1804 Vol. 57, No. 6 0099-2240/91/061799-06$02.00/0 Copyright (C 1991, American Society for Microbiology Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae C.-M. LIU,* P. A. McLEAN, C. C. SOOKDEO, AND F. C. CANNONt BioTechnica International, Inc., 85 Bolton Street, Cambridge, Massachusetts 02140 Received 9 January 1991/Accepted 11 April 1991 Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). AR organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not as fast as on Pi. These results suggest that glyphosate degradation ability is widespread in the family Rhizobiaceae. Uptake and metabolism of glyphosate were studied by using R. meliloti 1021. Sarcosine was found to be the immediate breakdown product, indicating that the initial cleavage of glyphosate was at the C-P bond. Therefore, glyphosate breakdown in R. meliloti 1021 is achieved by a C-P lyase activity. Glyphosate (isopropylamine salt of N-phosphonomethyl- tained from Research Organics, Cleveland, Ohio. Agarose glycine) is the active ingredient in Roundup, a broad-spec- was obtained from International Biotechnology Inc., New trum postemergence herbicide sold worldwide for use in a Haven, Conn. large number of agricultural crops and industrial sites. It is a Culture of bacteria. Inocula of all rhizobia except Rhizo- potent inhibitor of the enzyme 3-enol-pyruvylshikimate-5- bium leguminosarum (strain 300) and ANU843 were grown phosphate synthase (EPSP synthase, EC 2.5.1.19), which is in LB (1% Bacto tryptone, 0.5% Bacto yeast extract, 0.5% involved in the biosynthesis of the aromatic amino acids NaCl) at 28 to 32°C for 18 to 30 h.
    [Show full text]