A Morphometric Approach to Track Opium Poppy Domestication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feasibility Study on Opium Licensing in Afghanistan
FEASIBILITY STUDY ON OPIUM LICENSING IN AFGHANISTAN FOR THE PRODUCTION OF MORPHINE AND OTHER ESSENTIAL MEDICINES ﻣﻄﺎﻟﻌﻪ اﻣﮑﺎﻧﺎت در ﻣﻮرد ﺟﻮاز دهﯽ ﺗﺮﻳﺎک در اﻓﻐﺎﻧﺴﺘﺎن ﺑﺮای ﺗﻮﻟﻴﺪ ﻣﻮرﻓﻴﻦ و ادوﻳﻪ ﺟﺎت ﺿﺮوری دﻳﮕﺮ Initial Findings – September 2005 Kabul, Afghanistan The British Institute of International and Comparative Law Hugo Warner • University of Calgary Peter Facchini - Jill Hagel University of Ghent Brice De Ruyver - Laurens van Puyenbroeck University of Kabul Abdul Aziz Ali Ahmad - Osman Babury Cheragh Ali Cheragh - Mohammad Yasin Mohsini University of Lisbon Vitalino Canas - Nuno Aureliano • Shruti Patel • University of Toronto Benedikt Fischer Todd Culbert - Juergen Rehm • Wageningen University Jules Bos - Suzanne Pegge • Ali Wardak • The Senlis Council Gabrielle Archer - Juan Arjona - Luke Bryant Marc Das Gupta - Furkat Elmirzaev - Guillaume Fournier Jane Francis - Thalia Ioannidou - Ernestien Jensema Manna Kamio Badiella - Jorrit Kamminga - Fabrice Pothier Emmanuel Reinert - David Spivack - Daniel Werb FEASIBILITY STUDY ON OPIUM LICENSING IN AFGHANISTAN FOR THE PRODUCTION OF MORPHINE AND OTHER ESSENTIAL MEDICINES Initial Findings – September 2005 Kabul, Afghanistan Study Commissioned by The Senlis Council Study Edited and coordinated by David Spivack Editorial team: Juan Arjona, Jane Francis, Thalia Ioannidou, Ernestien Jensema, Manna Kamio Badiella, Fabrice Pothier. Published 2005 by MF Publishing Ltd 17 Queen Anne’s Gate, London SW1H 9BU, UK ISBN: 0-9550798-2-9 Printed and bound in Afghanistan by Jehoon; Printing Press Other publications -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Plant Biology PHYLOGENOMIC ANALYSIS OF ANCIENT GENOME DUPLICATIONS IN THE HISTORY OF PLANTS A Dissertation in Plant Biology by Yuannian Jiao © 2011 Yuannian Jiao Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2011 The dissertation of Yuannian Jiao was reviewed and approved* by the following: Claude dePamphilis Professor of Biology Dissertation Advisor Chair of Committee Hong Ma Professor of Biology John Carlson Professor of Molecular Genetics Webb Miller Professor of Comparative Genomics and Bioinformatics Naomi Altman Professor of Statistics Teh-hui Kao Chair of Plant Biology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization, has generally been viewed as a primary source of material for the origin of evolutionary novelties. Most flowering plants have been shown to be ancient polyploids that have undergone one or more rounds of WGDs early in their evolution, and many lineages have since undergone additional, independent and more recent genome duplications. It was suggested that the paleopolyploidy events were crucial to the radiation and success of angiosperms, but evidence for proposed ancient genome duplications remains equivocal. Plant genomes are highly dynamic and usually go through intense structural rearrangements and gene loss following duplication. Old(er) WGDs can not -
44 * Papaveraceae 1
44 * PAPAVERACEAE 1 Dennis I Morris 2 Annual or perennial herbs, rarely shrubs, with latex generally present in tubes or sacs throughout the plants. Leaves alternate, exstipulate, entire or more often deeply lobed. Flowers often showy, solitary at the ends of the main and lateral branches, bisexual, actinomorphic, receptacle hypogynous or perigynous. Sepals 2–3(4), free or joined, caducous. Petals (0–)4–6(–12), free, imbricate and often crumpled in the bud. Stamens usually numerous, whorled. Carpels 2-many, joined, usually unilocular, with parietal placentae which project towards the centre and sometimes divide the ovary into several chambers, ovules numerous. Fruit usually a capsule opening by valves or pores. Seeds small with crested or small raphe or with aril, with endosperm. A family of about 25 genera and 200 species; cosmopolitan with the majority of species found in the temperate and subtropical regions of the northern hemisphere. 6 genera and 15 species naturalized in Australia; 4 genera and 9 species in Tasmania. Papaveraceae are placed in the Ranunculales. Fumariaceae (mostly temperate N Hemisphere, S Africa) and Pteridophyllaceae (Japan) are included in Papaveraceae by some authors: here they are retained as separate families (see Walsh & Norton 2007; Stevens 2007; & references cited therein). Synonymy: Eschscholziaceae. Key reference: Kiger (2007). External resources: accepted names with synonymy & distribution in Australia (APC); author & publication abbre- viations (IPNI); mapping (AVH, NVA); nomenclature (APNI, IPNI). 1. Fruit a globular or oblong capsule opening by pores just below the stigmas 2 1: Fruit a linear capsule opening lengthwise by valves 3 2. Stigmas joined to form a disk at the top of the ovary; style absent 1 Papaver 2: Stigmas on spreading branches borne on a short style 2 Argemone 3. -
Papaver Somniferum L.) Accepted: 11-06-2017
Journal of Pharmacognosy and Phytochemistry 2017; 6(4): 89-93 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Correlation of different characters and Path analysis in JPP 2017; 6(4): 89-93 Received: 10-05-2017 opium poppy (Papaver somniferum L.) Accepted: 11-06-2017 Santra Haritwal Santra Haritwal, Dr. Dodiya NS, Manish Patidar, Mohan Gurjar and Department of Plant Breeding and Genetics, Rajasthan College Bhagwati Baranda of Agriculture, MPUAT, Udaipur, Rajasthan, India Abstract The present research was carried out using 25 genotypes were planted in randomized block design with Dr. Dodiya NS Department of Plant Breeding three replications during Rabi- 2016-2017 at Research Farm, Department of Plant Breeding and Genetics, and Genetics, Rajasthan College Rajasthan College of Agriculture, Maharana Pratap University of Agriculture & Technology, Udaipur. of Agriculture, MPUAT, Association study indicated that seed yield per plant was positively and significantly correlated at Udaipur, Rajasthan, India genotypic level with husk yield per plant, latex yield per plant, number of effective capsule per plant, diameter of main capsule, days to 50 per cent flowering and plant height, whereas husk yield per plant Manish Patidar and latex yield per plant showed positive significant correlation with seed yield per plant only at Department of Plant Breeding phenotypic level and latex yield per plant was also positively and significantly correlated at genotypic and Genetics, Rajasthan College level with diameter of main capsule, days to 50 per cent flowering, husk yield per plant, seed yield per of Agriculture, MPUAT, plant and number of effective capsule per plant. These associations indicated that improvement in seed Udaipur, Rajasthan, India yield and latex can be achieved by improving the above characters. -
Plant Powers, Poisons, and Herb Craft
PLANT POWERS, POISONS, AND HERB CRAFT BY DALE PENDELL Foreword by Gary Snyde, $21.95 US In 'Pharmako/Poeia, Dale Pendell offers a mesmerizing guide to psychoactive Alternative plants, from their pharmacological roots to the literary offshoots. "This is a Health/ book," writes Gary Snyder, "about danger: dangerous knowledge, even more Literature dangerous ignorance." Against the greater danger, ignorance, Pendell strikes a formidable blow, as he proves himself a wise and witty guide to our plant teach- ers, their powers and their poisons. "Dale Pendell reactivates the ancient connection between the bardic poet and the shaman. His Pharmako/Poeia is a litany to the secret plant allies that have always accompanied us along the alchemical trajectory that leads to a new and yet authentically archaic future." — Terence McKenna, author of True Hallucinations "Much of our life-force calls upon the plant world for support, in medicines and in foods, as both allies and teachers. Pendell provides a beautifully crafted bridge between these two worlds. The magic he shares is that the voices are spoken and heard both ways; we communicate with plants and they with us. This book is a moving and poetic presentation of this dialogue." — Dr. Alexander T. Shulgin, University of California at Berkeley, Department of Public Health "Pharmako/Poeia is an epic poem on plant humours, an abstruse alchemic treatise, an experiential narrative jigsaw puzzle, a hip and learned wild-nature reference text, a comic paean to cosmic consciousness, an ecological handbook, a dried-herb pastiche, a countercultural encyclopedia of ancient fact and lore that cuts through the present 'conservative' war-on-drugs psychobabble." - Allen Ginsberg, poet Cover design "Dale PendelFs remarkable book will make it impossible to and color work ever again underestimate the most unprepossessing plant. -
System-Based Transcriptomic and Metabolomic Network Analyses In
SYSTEM-BASED TRANSCRIPTOMIC AND METABOLOMIC NETWORK ANALYSES IN PAPAVER SOMNIFERUM by JOHN WILLIAM KERRY (Under the Direction of Jim Leebens-Mack) ABSTRACT Papaver somniferum is an annual plant which produces economically important medicinal alkaloids, oils, and seeds. The morphine biosynthesis pathway in P. somniferum has been characterized but a system-wide analysis of transcriptional modules that regulate the concentration of alkaloids within the plant has not yet been performed. In this study we use weighted gene co-expression network analysis (WGCNA) of a de novo assembly of 5 tissues of P. somniferum. We use differentially expressed transcripts to build a weighted gene co-expression network using the WGCNA bioconductor package. Finally we analyze those modules which correlate well with LC-MS/MS generated metabolite concentration values. INDEX WORDS: Papaver Metabolite Co-expression RNASeq SYSTEM-BASED TRANSCRIPTOMIC AND METABOLOMIC NETWORK ANALYSES IN PAPAVER SOMNIFERUM by JOHN WILLIAM KERRY BS, University of Georgia, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2013 © 2013 John William Kerry All Rights Reserved SYSTEM-BASED TRANSCRIPTOMIC AND METABOLOMIC NETWORK ANALYSES IN PAPAVER SOMNIFERUM by JOHN WILLIAM KERRY Major Professor: Jim Leebens-mack Committee: Michelle Momany Thiab Taha Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2013 DEDICATION This thesis is dedicated to Bill Kerry as his legacy comes to fruition. This work would not have been possible without his support and love. This thesis is also dedicated to my family, Barbara, Bob, and Victoria whom have supported my studies and provided all the love and assistance I could want and more. -
Nicotiana Benthamiana and Has Functionally Diversified in Angiosperms Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1*
Coenen et al. BMC Plant Biology (2018) 18:129 https://doi.org/10.1186/s12870-018-1349-7 RESEARCH ARTICLE Open Access TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1* Abstract Background: MADS-box genes are key regulators of plant reproductive development and members of most lineages of this gene family have been extensively studied. However, the function and diversification of the ancient TM8 lineage remains elusive to date. The available data suggest a possible function in flower development in tomato and fast evolution through numerous gene loss events in flowering plants. Results: We show the broad conservation of TM8 within angiosperms and find that in contrast to other MADS-box gene lineages, no gene duplicates have been retained after major whole genome duplication events. Through knock-down of NbTM8 by virus induced gene silencing in Nicotiana benthamiana, we show that NbTM8 represses miR172 together with another MADS-box gene, SHORT VEGETATIVE PHASE (NbSVP). In the closely related species Petunia hybrida, PhTM8 is not expressed under the conditions we investigated and consistent with this, a knock-out mutant did not show a phenotype. Finally, we generated transgenic tomato plants in which TM8 was silenced or ectopically expressed, but these plants did not display a clear phenotype. Therefore, no clear function could be confirmed for Solanum lycopersium. Conclusions: While the presence of TM8 is generally conserved, it remains difficult to propose a general function in angiosperms. Based on all the available data to date, supplemented with our own results, TM8 function seems to have diversified quickly throughout angiosperms and acts as repressor of miR172 in Nicotiana benthamiana, together with NbSVP. -
Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Northumbria Research Link Northumbria Research Link Citation: Carlin, Michelle, Dean, John and Ames, Jennifer M. (2020) Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds. Frontiers in Chemistry, 8. p. 737. ISSN 2296-2646 Published by: Frontiers URL: https://doi.org/10.3389/fchem.2020.00737 <https://doi.org/10.3389/fchem.2020.00737> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/44404/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/pol i cies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) ORIGINAL RESEARCH published: 27 August 2020 doi: 10.3389/fchem.2020.00737 Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds Michelle G. -
TM8 Represses Developmental Timing in Nicotiana Benthamiana and Has
TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms Heleen Coenen, Tom Viaene, Michiel Vandenbussche, Koen Geuten To cite this version: Heleen Coenen, Tom Viaene, Michiel Vandenbussche, Koen Geuten. TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms. BMC Plant Biology, BioMed Central, 2018, 18 (1), 10.1186/s12870-018-1349-7. hal-02389867 HAL Id: hal-02389867 https://hal.archives-ouvertes.fr/hal-02389867 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Coenen et al. BMC Plant Biology (2018) 18:129 https://doi.org/10.1186/s12870-018-1349-7 RESEARCH ARTICLE Open Access TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1* Abstract Background: MADS-box genes are key regulators of plant reproductive development and members of most lineages of this gene family have been extensively studied. However, the function and diversification of the ancient TM8 lineage remains elusive to date. The available data suggest a possible function in flower development in tomato and fast evolution through numerous gene loss events in flowering plants. -
Open Yetingdissertationori.Pdf
The Pennsylvania State University The Graduate School Intercollege Graduate Program in Genetics HORIZONTAL GENE TRANSFER STUDIES IN PARASITIC PLANTS OF THE OROBANCHACEAE A Dissertation in Genetics by Yeting Zhang © 2013 Yeting Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 The dissertation of Yeting Zhang was reviewed and approved* by the following: Stephen W. Schaeffer Professor of Biology Chair of Committee Claude W. dePamphilis Professor of Biology Dissertation Advisor Tomas A. Carlo Assistant Professor of Biology John E. Carlson Professor of Molecular Genetics, School of Forest Resources Director of The Schatz Center for Tree Molecular Genetics Naomi Altman Professor of Statistics Robert F. Paulson Professor of Veterinary and Biomedical Sciences Chair, Intercollege Graduate Degree Program in Genetics *Signatures are on file in the Graduate School ii ABSTRACT Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants in order to extract nutrients and water. As a result of these direct plant-to-plant connections with their host plants, parasitic plants have unique opportunities for horizontal gene transfer (HGT), the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as the recipients and donors of HGT, but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. Three parasitic plant genera from Orobanchaceae (Triphysaria versicolor, Striga hermonthica, and Orobanche aegyptiaca (syn. Phelipanche aegyptiaca)) were chosen for a massive transcriptome-sequencing project known as the Parasitic Plant Genome Project (PPGP). These species were chosen for two reasons. -
The Regulation of Ontogenetic Diversity in Papaveraceae Compound Leaf Development
The Regulation of Ontogenetic Diversity in Papaveraceae Compound Leaf Development A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Alastair R. Plant August 2013 © 2013 Alastair R. Plant. All Rights Reserved. 2 This thesis titled The Regulation of Ontogenetic Diversity in Papaveraceae Compound Leaf Development by ALASTAIR R PLANT has been approved for the Department of Environmental and Plant Biology and the College of Arts and Sciences by Stefan Gleissberg Assistant Professor of Environmental and Plant Biology Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT PLANT, ALASTAIR R., M.S., August 2013, Plant Biology The Regulation of Ontogenetic Diversity in Papaveraceae Compound Leaf Development Director of Thesis: Stefan Gleissberg The leaf is almost ubiquitous throughout land plants but due to its complex and flexible developmental program is highly morphologically variable between taxa. Description of the functions of regulatory genes key to leaf development in different evolutionary lineages allows the study of changes in developmental mechanisms through evolutionary time as a means for anatomical and morphological diversification. The roles of homologs of CINCINNATA-like TCP family genes, ARP genes, and Class I KNOX genes were investigated in two members of the Papaveraceae, a basal eudicot lineage positioned in between major angiosperm groups, by phylogenetic analysis, in situ hybridization, expression profiling by quantitative polymerase chain reaction, and virus- induced gene silencing in Eschscholzia californica and Cysticapnos vesicaria. Expression data were similar to those for homologous genes in core eudicot species, however, some gene functions found in core eudicots were not associated with basal eudicot homologs, and so have either been gained or lost from the ancestral state. -
Alkaloids – Secrets of Life
ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE This page intentionally left blank ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE Tadeusz Aniszewski Associate Professor in Applied Botany Senior Lecturer Research and Teaching Laboratory of Applied Botany Faculty of Biosciences University of Joensuu Joensuu Finland Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2007 Copyright © 2007 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation