Buydrm Keyos™ Device DRM™ Features Matrix Page 1 of 7

Total Page:16

File Type:pdf, Size:1020Kb

Buydrm Keyos™ Device DRM™ Features Matrix Page 1 of 7 BuyDRM KeyOS™ Device DRM™ Features Matrix Page 1 of 7 BuyDRM KeyOS™ Device DRM™ Features Matrix [Version 06.11.2014] This document Created By Andrew (CTO) [email protected] Property of BuyDRM. Confidential and Private ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 2 of 7 Product feature Android iOS Media Formats MP31 (local playback) Yes Yes MP41 (local playback) Yes Yes MP31 (progressive download) Yes Yes MP41 (progressive download) Yes Yes MS Smooth Streaming (ISO / IEC 14496-12) Yes Yes ISMV (Single File local playback) Yes Yes ISMV (Single File progressive download) Yes Yes HLS v4 (ISO / IEC 13818-2) Yes Yes Smooth Streaming VOD MPEG-DASH Yes Yes (ISO / IEC 14496-12 / BMFF) Mpeg - TS VOD MPEG-DASH Yes Yes (ISO / IEC 13818-2) Smooth Streaming LIVE MPEG-DASH Yes Yes (ISO / IEC 14496-12 / BMFF) Mpeg - TS LIVE MPEG-DASH Yes Yes (ISO / IEC 13818-2) MPEG-DASH Specifics Time Based Yes Yes (Template-based Segment URL Construction) ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 3 of 7 Product feature Android iOS Index / Sequence Yes Yes (Template-based Segment URL Construction) ISOFF – live profile Yes Yes ISOFF – main profile No (not yet) No (not yet) ISOFF – on-demand profile Yes Yes Media Codecs H.264 Yes Yes VC-1 No No HEVC No (Not Yet) No (Not Yet) AAC-HE v1 and v2 Audio Codec Support Yes Yes AAC-LC Audio Codec Support Yes Yes AAC (ADTS) Yes Yes Dolby Digital + Yes Yes2 PlayReady Licenses Persistent license - (Offline content playback) Yes Yes Non persistent license Yes Yes Disable HDMI Output Yes (Application Layer) Yes (Application Layer) Output protection level No (Not yet) No (Not yet) ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 4 of 7 Product feature Android iOS Content Delivery Smooth Streaming over 3G/4G Yes No3 Smooth Streaming over WiFi Yes Yes HLS Streaming over 3G/4G Yes Yes HLS Streaming over WiFi Yes Yes Security Features Integrity checks Yes Yes Anti-debugger checks Yes Yes Code obfuscation Yes Yes Subtitles External Subtitles and Closed captions (CEA 708 (for MPEG2-TS), DFXP, SMI, SRT, Yes Yes WebVTT)4 The subtitle delivery to AirPlay is supported through the WebVTT (The Web Video Text No Yes Track). HLS: segmented stream of WebVTT Yes Yes Live Streams Subtitles for Smooth Streaming: Yes Yes segmented timed text (TTML) Other Features Advertising (SCTE 130, VAST, MAST, VPAID) No (not yet) No (not yet) ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 5 of 7 Product feature Android iOS AirPlay No Yes AirPlay Mirroring No Yes Audio description (if in Manifest) Yes Yes Conviva Video Quality Analytics Yes No(Not yet) Devices Android 2.2 and later iOS 4.0 and later Key Rotation Yes Yes License Blackouts (Live TV only) No(Not Yet) No(Not yet) Local file playback Yes Yes MediaRoom Support Yes Yes Multiple Audio Tracks (HLS v4) Yes Yes Multiple Audio Tracks Streaming (Smooth Yes Yes Streaming) Player Controls (Play, Pause, Seek and Stop) Yes Yes Player re-skin Yes Yes PlayReady License Pre-Delivery Yes Yes PlayReady Network Devices support No (not yet) No (not yet) PlayReady Trusted Clock Yes Yes Remote License Revocation or Management No (not yet) No (not yet) ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 6 of 7 Scalable License Chaining Yes Yes Standard License Chaining Yes Yes Versions of PlayReady “2.1” “2.1” Zoetrope No (not yet) No (not yet) OS versions HW5 acceleration supported on devices with iPhone 5S the following chipsets: iPhone 5C Samsung Hummingbird / Exynos iPhone 5 Qualcomm Snapdragon iPhone 4S NVidia Tegra iPhone 4 TI OMAP4 iPhone 3GS Telechips TC89XX iPhone 3G ST Ericsson NovaThor iPad Touch 3rd and 4th generation Supported chipsets iPad 3 HW5 acceleration for x86 chipsets: iPad 2 Intel Atom chipsets. iPad Only SW6 acceleration supported on devices with the following chipsets: RockChip Allwinner MediaTek AMLogic 1 – PlayReady envelope encrypted (local playback). 2 – Our SDK uses the codecs in devices. SDK can support it if the device has Dolby license. 3 – Prevented by Apple. ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. BuyDRM KeyOS™ Device DRM™ Features Matrix Page 7 of 7 4 – These formats pass caption information to a player alongside of a video, rather than being embedded in the video itself. This approach is usually used by browser-based video playback (Flash, HTML5). 5 – Hardware acceleration is the use of computer hardware to perform some function faster than is possible in software running on a general purpose CPU. 6 – Means that all rendering is done in CPU. HW acceleration is not supported in these devices. Media content encoded with H.264 Main/High profiles will not work on such devices. You are able to use only content encoded with Baseline profile. ©2014 NFA Group Inc. All rights reserved. CONFIDENTIAL. Do not forward, print or re-distribute with the express written consent of BuyDRM. .
Recommended publications
  • Multiprocessing in Mobile Platforms: the Marketing and the Reality
    Multiprocessing in Mobile Platforms: the Marketing and the Reality Marco Cornero, Andreas Anyuru ST-Ericsson Introduction During the last few years the mobile platforms industry has aggressively introduced multiprocessing in response to the ever increasing performance demanded by the market. Given the highly competitive nature of the mobile industry, multiprocessing has been adopted as a marketing tool. This highly visible, differentiating feature is used to pass the oversimplified message that more processors mean better platforms and performance. The reality is much more complex, because several interdependent factors are at play in determining the efficiency of multiprocessing platforms (such as the effective impact on software performance, chip frequency, area and power consumption) with the number of processors impacting only partially the overall balance, and with contrasting effects linked to the underlying silicon technologies. In this article we illustrate and compare the main technological options available in multiprocessing for mobile platforms, highlighting the synergies between multiprocessing and the disruptive FD-SOI silicon technology used in the upcoming ST-Ericsson products. We will show that compared to personal computers (PCs), the performance of single-processors in mobile platforms is still growing and how, from a software performance perspective, it is more profitable today to focus on faster dual-core rather than slower quad-core processors. We will also demonstrate how FD-SOI benefits dual-core processors even more by providing higher frequency for the same power consumption, together with a wider range of energy efficient operating modes. All of this results in a simpler, cheaper and more effective solution than competing homogeneous and heterogeneous quad-processors.
    [Show full text]
  • FAN53525 3.0A, 2.4Mhz, Digitally Programmable Tinybuck® Regulator
    FAN53525 — 3.0 A, 2.4 MHz, June 2014 FAN53525 3.0A, 2.4MHz, Digitally Programmable TinyBuck® Regulator Digitally Programmable TinyBuck Digitally Features Description . Fixed-Frequency Operation: 2.4 MHz The FAN53525 is a step-down switching voltage regulator that delivers a digitally programmable output from an input . Best-in-Class Load Transient voltage supply of 2.5 V to 5.5 V. The output voltage is 2 . Continuous Output Current Capability: 3.0 A programmed through an I C interface capable of operating up to 3.4 MHz. 2.5 V to 5.5 V Input Voltage Range Using a proprietary architecture with synchronous . Digitally Programmable Output Voltage: rectification, the FAN53525 is capable of delivering 3.0 A - 0.600 V to 1.39375 V in 6.25 mV Steps continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10 mA. The regulator operates at Programmable Slew Rate for Voltage Transitions . a nominal fixed frequency of 2.4 MHz, which reduces the . I2C-Compatible Interface Up to 3.4 Mbps value of the external components to 330 nH for the output inductor and as low as 20 µF for the output capacitor. PFM Mode for High Efficiency in Light Load . Additional output capacitance can be added to improve . Quiescent Current in PFM Mode: 50 µA (Typical) regulation during load transients without affecting stability, allowing inductance up to 1.2 µH to be used. Input Under-Voltage Lockout (UVLO) ® At moderate and light loads, Pulse Frequency Modulation Regulator Thermal Shutdown and Overload Protection . (PFM) is used to operate in Power-Save Mode with a typical .
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Android Benchmarks - Geekbench Browser 11/05/2015 6:27 Pm Geekbench Browser Geekbench 3 Geekbench 2 Benchmark Charts Search Geekbench 3 Results Sign up Log In
    Android Benchmarks - Geekbench Browser 11/05/2015 6:27 pm Geekbench Browser Geekbench 3 Geekbench 2 Benchmark Charts Search Geekbench 3 Results Sign Up Log In COMPARE Android Benchmarks Processor Benchmarks Mac Benchmarks iOS Benchmarks Welcome to Primate Labs' Android benchmark chart. The data on this chart is gathered from user-submitted Geekbench 3 results from the Geekbench Browser. Android Benchmarks Geekbench 3 scores are calibrated against a baseline score of 2500 (which is the score of an Intel Core i5-2520M @ 2.50 GHz). Higher scores are better, with double the score indicating double the performance. SHARE If you're curious how your computer compares, you can download Geekbench 3 and run it on your computer to find out your score. Tweet 0 This chart was last updated 30 minutes ago. 139 Like 891 Single Core Multi-Core Device Score HTC Nexus 9 1890 NVIDIA Tegra K1 Denver 2499 MHz (2 cores) Samsung Galaxy S6 edge 1306 Samsung Exynos 7420 1500 MHz (8 cores) Samsung Galaxy S6 1241 Samsung Exynos 7420 1500 MHz (8 cores) Samsung Galaxy Note 4 1164 Samsung Exynos 5433 1300 MHz (8 cores) NVIDIA SHIELD Tablet 1087 NVIDIA Tegra K1 2218 MHz (4 cores) Motorola DROID Turbo 1052 Qualcomm APQ8084 Snapdragon 805 2649 MHz (4 cores) Samsung Galaxy S5 Plus 1027 Qualcomm APQ8084 Snapdragon 805 2457 MHz (4 cores) Motorola Nexus 6 1016 Qualcomm APQ8084 Snapdragon 805 2649 MHz (4 cores) Samsung Galaxy Note 4 986 Qualcomm APQ8084 Snapdragon 805 2457 MHz (4 cores) Motorola Moto X (2014) 970 Qualcomm MSM8974AC Snapdragon 801 2457 MHz (4 cores) HTC One (M8x)
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0254416 A1 Shih (43) Pub
    US 20150254416A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0254416 A1 Shih (43) Pub. Date: Sep. 10, 2015 (54) METHOD AND SYSTEM FOR PROVIDING (52) U.S. Cl. MEDICAL ADVICE CPC .......... G06F 19/3425 (2013.01); G06F 19/322 (2013.01) (71) Applicant: ClickMedix, Gaithersburg, MD (US) (72) Inventor: Ting-Chih Shih, Rockville, MD (US) (57) ABSTRACT (73) Assignee: CLICKMEDIX, Gaithersburg, MD A method and system for providing medical services wherein (US) a server establishes a wireless connection with a mobile device or computer of a user. The mobile device or computer (21) Appl. No.: 14/199,559 has already been provided with an application for the entry of (22) Filed: Mar. 6, 2014 user information. The server receives encrypted user infor mation from the mobile device or computer, decrypts the user Publication Classification information, and forwards the user information to experts selected on the basis of the user information. The server (51) Int. Cl. collects responses from the experts, and provides expert G06F 9/00 (2006.01) advice to the user of the mobile device or computer. NTERNET SERVICE SERVER PROVIDER 25 Patent Application Publication Sep. 10, 2015 Sheet 1 of 10 US 2015/0254416 A1 S. OO L gy2 O ch : 2 > S 2 v 9 --- ---m-m- Patent Application Publication Sep. 10, 2015 Sheet 2 of 10 US 2015/0254416 A1 ZI IZ| -----———————? |------ OT Patent Application Publication Sep. 10, 2015 Sheet 3 of 10 US 2015/0254416 A1 dXB:LHB Patent Application Publication Sep. 10, 2015 Sheet 4 of 10 US 2015/0254416 A1 ——— ?II || | | || | |NOIIVWHOHNI Å ||GO?I Nodisva HITV3HLNBILVd ______.ISOH______ ~~~~}dno89v10BTES!| S183dXBHO| |~\~~~~|||| †7·314 || | | || | ZO? A | } }} | }{ | l Patent Application Publication US 2015/0254416 A1 ?euauss)| Patent Application Publication Sep.
    [Show full text]
  • Exploiting Broadcast Information in Cellular Networks
    Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks Nico Golde, Kévin Redon, and Jean-Pierre Seifert, Technische Universität Berlin and Deutsche Telekom Innovation Laboratories This paper is included in the Proceedings of the 22nd USENIX Security Symposium. August 14–16, 2013 • Washington, D.C., USA ISBN 978-1-931971-03-4 Open access to the Proceedings of the 22nd USENIX Security Symposium is sponsored by USENIX Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks Nico Golde, K´evin Redon, Jean-Pierre Seifert Technische Universitat¨ Berlin and Deutsche Telekom Innovation Laboratories {nico, kredon, jpseifert}@sec.t-labs.tu-berlin.de Abstract comBB [20, 25, 45]. These open source projects consti- tute the long sought and yet publicly available counter- Mobile telecommunication has become an important part parts of the previously closed radio stacks. Although all of our daily lives. Yet, industry standards such as GSM of them are still constrained to 2G network handling, re- often exclude scenarios with active attackers. Devices cent research provides open source software to tamper participating in communication are seen as trusted and with certain 3G base stations [24]. Needless to say that non-malicious. By implementing our own baseband those projects initiated a whole new class of so far uncon- firmware based on OsmocomBB, we violate this trust sidered and practical security investigations within the and are able to evaluate the impact of a rogue device with cellular communication research, [28, 30, 34]. regard to the usage of broadcast information. Through our analysis we show two new attacks based on the pag- Despite the recent roll-out of 4G networks, GSM re- ing procedure used in cellular networks.
    [Show full text]
  • Semiconductor (Overweight)
    KDB Daewoo Securities upgraded to AA+ (highest credit rating given to a domestic securities firm) December 30, 2011 By KR, KIS, and NICE on Nov. 2011 2012 Outlook Report Industry Report Semiconductor (Overweight) Daewoo Securities Co., Ltd. James Song +822-768-3722 [email protected] William Lee +822-768-4168 [email protected] Mobile revolution to bring about a paradigm shift The mobile revolution is now transitioning from its initial phase of creative innovation to one of evolution and growth. In 2012, the smart device market is projected to reach economies of scale by growing to 800mn units (twice the PC market). Samsung Electronics (SEC), having already overtaken Apple as the worldÊs top smartphone seller, is well positioned to leverage its strengths to continue its lead through this next phase. In light of the mid- to long-term growth of smart devices, the global application processor (AP) market is expected to display explosive growth in the coming years. Although global AP sales are forecast to come in at US$8bn in 2011, in contrast to CPU sales of US$40bn, we project the AP market to dramatically expand to US$38bn in 2015, surpassing the CPU market. This should provide enormous opportunities for SEC, which already controls over 50% of the global AP market. SEC has differentiated itself from its leading peers in the mobile market by achieving strong vertical integration. As such, the companyÊs AP, mobile DRAM, NAND, and AMOLED businesses will all grow in line with the growth of its smartphone business. In addition to overtaking Apple in the smartphone segment, SEC is likely to eclipse Intel in the semiconductor segment over the mid- to long-term.
    [Show full text]
  • ST-Ericsson Announces New Highly Integrated LTE Novathor Platform
    ST-Ericsson announces new highly integrated LTE NovaThor platform ST-Ericsson announces new highly integrated LTE NovaThor platform NovaThor L8540 integrates Thor LTE technology with powerful dual- core application processor to deliver extraordinary multimedia performance Barcelona, February 28, 2012 - ST-Ericsson, a world leader in wireless platforms and semiconductors, announced today the latest addition to its integrated smartphone and tablet platform portfolio. The NovaThor(TM) L8540 is an LTE/HSPA+/TD-HSPA-enabled integrated smartphone platform with the powerful application processor and modem integrated on a single die. "By adding the new NovaThor L8540 platform to our portfolio of highly integrated smartphone and tablet solutions, the L8540 takes integration of LTE platforms to the next level," said Marc Cetto, senior vice president of smartphone and tablet solutions for ST-Ericsson. "By integrating the powerful dual-core application processor with our industry-leading LTE multimode modem we bring further size, bill of materials and power consumption savings to our customers. Consumers of next generation smartphones powered by the NovaThor L8540 will benefit from compact, power efficient devices that deliver an amazing multimedia experience." The NovaThor L8540 integrates a dual-core 1.85GHz ARM Cortex-A9 processor, a powerful Imagination PowerVR(TM) SGX544 GPU running at 500Mhz and an LTE/HSPA+/TD-HSPA modem on a single 28nm die. Thanks to its ultra-low voltage operating mode the NovaThor L8540 extends battery life for typical smartphone usage by up to 30% compared to platforms in the market today. The NovaThor L8540 will provide extraordinary multimedia performance in an integrated solution, supporting 1080p video encoding and playback at up to 60 frames per second, 1080p 3D camcorder functionality, support for displays up to WUXGA (1920x1200) at 60 frames per second and support for cameras up to 20 megapixels.
    [Show full text]
  • Company Vendor ID (Decimal Format) (AVL) Ditest Fahrzeugdiagnose Gmbh 4621 @Pos.Com 3765 0XF8 Limited 10737 1MORE INC
    Vendor ID Company (Decimal Format) (AVL) DiTEST Fahrzeugdiagnose GmbH 4621 @pos.com 3765 0XF8 Limited 10737 1MORE INC. 12048 360fly, Inc. 11161 3C TEK CORP. 9397 3D Imaging & Simulations Corp. (3DISC) 11190 3D Systems Corporation 10632 3DRUDDER 11770 3eYamaichi Electronics Co., Ltd. 8709 3M Cogent, Inc. 7717 3M Scott 8463 3T B.V. 11721 4iiii Innovations Inc. 10009 4Links Limited 10728 4MOD Technology 10244 64seconds, Inc. 12215 77 Elektronika Kft. 11175 89 North, Inc. 12070 Shenzhen 8Bitdo Tech Co., Ltd. 11720 90meter Solutions, Inc. 12086 A‐FOUR TECH CO., LTD. 2522 A‐One Co., Ltd. 10116 A‐Tec Subsystem, Inc. 2164 A‐VEKT K.K. 11459 A. Eberle GmbH & Co. KG 6910 a.tron3d GmbH 9965 A&T Corporation 11849 Aaronia AG 12146 abatec group AG 10371 ABB India Limited 11250 ABILITY ENTERPRISE CO., LTD. 5145 Abionic SA 12412 AbleNet Inc. 8262 Ableton AG 10626 ABOV Semiconductor Co., Ltd. 6697 Absolute USA 10972 AcBel Polytech Inc. 12335 Access Network Technology Limited 10568 ACCUCOMM, INC. 10219 Accumetrics Associates, Inc. 10392 Accusys, Inc. 5055 Ace Karaoke Corp. 8799 ACELLA 8758 Acer, Inc. 1282 Aces Electronics Co., Ltd. 7347 Aclima Inc. 10273 ACON, Advanced‐Connectek, Inc. 1314 Acoustic Arc Technology Holding Limited 12353 ACR Braendli & Voegeli AG 11152 Acromag Inc. 9855 Acroname Inc. 9471 Action Industries (M) SDN BHD 11715 Action Star Technology Co., Ltd. 2101 Actions Microelectronics Co., Ltd. 7649 Actions Semiconductor Co., Ltd. 4310 Active Mind Technology 10505 Qorvo, Inc 11744 Activision 5168 Acute Technology Inc. 10876 Adam Tech 5437 Adapt‐IP Company 10990 Adaptertek Technology Co., Ltd. 11329 ADATA Technology Co., Ltd.
    [Show full text]
  • Androidtm Benchmarks
    28. 1. 2015 PassMark ­ Android phone model listing Shopping cart | Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home » Android Benchmarks » Device List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android iOS / iPhone TM ­­­­Select A Page ­­­­ Android Benchmarks Performance Comparison of Android Devices How does your device compare? Device List Add your device to our benchmark chart with PerformanceTest Mobile! Below is an alphabetical list of all Android device types that appear in the charts. Clicking on a specific device name will take you to the charts where it appears in and will highlight it for you. Android Devices Find Device PassMark Rating CPUMark Rating Rank Android Device Type (higher is better) (higher is better) (lower is better) 1005tg N10­QM 935 3377 3948 1080p­n003 1080P­N003 2505 9820 815 1life 1Life.smart.air 2282 10103 1170 3­q RC9731C 2154 5756 1394 3q LC0720C 1646 4897 2414 3q QS0717D 1363 1760 3109 3q RC9712C 2154 5223 1396 9300 9300 1275 3364 3321 A­link PAD10 ICS 616 1130 4249 A.c.ryan dyno 7.85 2749 11065 596 A2 A2 1240 2784 3388 A800 XOLO_A800 1344 3661 3157 A830 Lenovo A830 2114 8313 1470 Ab­s_a Aqua_7 1522 3640 2713 Abc Vision7­DCI 2602 6880 704 Abroad ABROAD 1438 3379 2929 Acer A1­713 2229 9069 1273 Acer A1­810 2265 8314 1203 Acer A1­811 2233 8524 1268 Acer A1­830 3004 9207 507 Acer A1­840 3962 23996 267 Acer A1­840FHD 5141 28720 58 Acer A101 1577 3758 2586 Acer A110 1964 8623 1822 Acer A200 1559 3822 2621 Acer A210 2135 8315 1428 Acer A211 1848 8130 2035 Acer A3­A10 2351 8128 1032 Acer A3­A20FHD 3269 11265 428 Acer AA3­600 5451 22392 22 Acer B1­710 1336 3897 3173 Acer B1­711 2293 8583 1142 Acer b1­720 2058 4371 1613 Acer B1­730HD 3064 9031 487 Acer B1­A71 1308 4119 3236 Acer beTouch E140 567 475 4264 Acer CloudMobile S500 2111 4874 1478 Acer DA220HQL 1156 2960 3545 http://www.androidbenchmark.net/device_list.php 1/71 28.
    [Show full text]
  • Pro Hac Vice Hac Pro Plaintiffs, Defendants
    Case3:12-cv-03877-VC Document62 Filed06/11/15 Page1 of 20 NELSON BUMGARDNER, P.C. 1 Edward R. Nelson, III (Pro Hac Vice) 2 [email protected] Brent Nelson Bumgardner (Pro Hac Vice) 3 [email protected] Barry J. Bumgardner (Pro Hac Vice) 4 [email protected] Thomas Christopher Cecil (Pro Hac Vice) 5 [email protected] th 6 3131 West 7 Street, Suite 300 Fort Worth, Texas 76107 7 [Tel.] (817) 377-9111 [Fax] (817) 377-3485 8 BANYS, 9 P.C. Christopher D. Banys (SBN 230038) 10 [email protected] Jennifer Lu Gilbert (SBN 255820) 11 [email protected] 1032 Elwell Court, Suite 100 12 Palo Alto, California 94303 13 [Tel.] (650) 308-8505 [Fax] (650) 353-2202 14 Attorneys for Plaintiff 15 PHOENIX DIGITAL SOLUTIONS LLC 16 UNITED STATES DISTRICT COURT 17 NORTHERN DISTRICT OF CALIFORNIA 18 19 TECHNOLOGY PROPERTIES LIMITED Case No. 3:12-cv-03877-VC (PSG) LLC, et al, 20 PDS’S MOTION TO Plaintiffs, COMPEL DISCOVERY 21 v. Hearing: 22 Date: August 11, 2015 Time: 10:00 a.m. 23 SAMSUNG ELECTRONICS CO., LTD. and SAMSUNG ELECTRONICS Place: Courtroom 5, 4th Floor Judge: Hon. Paul S. Grewal 24 AMERICA, INC., Defendants. 25 26 PDS’S MOTION TO COMPEL DISCOVERY 27 28 PDS’S MOTION TO COMPEL DISCOVERY Case No. 3:12-cv-03877-VC (PSG) Case3:12-cv-03877-VC Document62 Filed06/11/15 Page2 of 20 1 TABLE OF CONTENTS 2 NOTICE OF MOTION AND MOTION ......................................................................................... 1 3 RELIEF REQUESTED ................................................................................................................... 1 4 MEMORANDUM OF POINTS AND AUTHORITIES ................................................................. 1 5 I. INTRODUCTION ..............................................................................................................
    [Show full text]
  • ACORN RISC MACHINE Jitendra Marathe ARM Is a Reduced
    SRJIS / BIMONTHLY/JITENDRA MARATHE. (581-585) ACORN RISC MACHINE Jitendra Marathe ARM is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed by ARM Holdings. It was named the Advanced RISC Machine and, before that, the Acorn RISC Machine. The ARM architecture is the most widely used 32-bit instruction set architecture in numbers produced. Originally conceived by Acorn Computers for use in its personal computers, the first ARM-based products were the co-processor modules for the BBC series of computers. Features and applications: In 2005 about 98% of the more than one billion mobile phones sold each year used at least one ARM processor. As of 2009 ARM processors accounted for approximately 90% of all embedded 32-bit RISC processors and were used extensively in consumer electronics, including personal digital assistants (PDAs), tablets, mobile phones, digital media and music players, hand-held game consoles, calculators and computer peripherals such as hard drives and routers. Licensees: The ARM architecture is licensable. Companies that are current or former ARM licensees include Alcatel-Lucent, Apple Inc., AppliedMicro, Atmel, Broadcom, Cirrus Logic, CSR_plc, Digital Equipment Corporation, Ember, Energy Micro, Freescale, Intel (through DEC), LG, Marvell Technology Group, Microsemi, Microsoft, NEC, Nintendo, Nuvoton, Nvidia, Sony, NXP (formerly Philips Semiconductor), Oki, ON Semiconductor, Psion, Qualcomm, Renesas, Samsung, Sharp, Silicon Labs, STMicroelectronics, Symbios Logic, Texas Instruments, VLSI Technology, Yamaha, Fuzhou Rockchip, and ZiiLABS. In addition to the abstract architecture, ARM offers several microprocessor core designs, including the ARM7, ARM9, ARM11, Cortex- A8, Cortex-A9, and Cortex-A15. Companies often license these designs from ARM to manufacture and integrate into their own system on a chip (SoC) with other components like RAM, GPUs, or radio basebands (for mobile phones).
    [Show full text]