FAN53528-1006868.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bootstomp: on the Security of Bootloaders in Mobile Devices
BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna fnredini, machiry, dipanjan, yanick, antoniob, edg, yans, chris, [email protected] University of California, Santa Barbara Abstract by proposing simple mitigation steps that can be im- plemented by manufacturers to safeguard the bootloader Modern mobile bootloaders play an important role in and OS from all of the discovered attacks, using already- both the function and the security of the device. They deployed hardware features. help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of 1 Introduction the following stage before executing it. This process, in theory, should be immune even to attackers gaining With the critical importance of the integrity of today’s full control over the operating system, and should pre- mobile and embedded devices, vendors have imple- vent persistent compromise of a device’s CoT. However, mented a string of inter-dependent mechanisms aimed at not only do these bootloaders necessarily need to take removing the possibility of persistent compromise from untrusted input from an attacker in control of the OS in the device. -
Multiprocessing in Mobile Platforms: the Marketing and the Reality
Multiprocessing in Mobile Platforms: the Marketing and the Reality Marco Cornero, Andreas Anyuru ST-Ericsson Introduction During the last few years the mobile platforms industry has aggressively introduced multiprocessing in response to the ever increasing performance demanded by the market. Given the highly competitive nature of the mobile industry, multiprocessing has been adopted as a marketing tool. This highly visible, differentiating feature is used to pass the oversimplified message that more processors mean better platforms and performance. The reality is much more complex, because several interdependent factors are at play in determining the efficiency of multiprocessing platforms (such as the effective impact on software performance, chip frequency, area and power consumption) with the number of processors impacting only partially the overall balance, and with contrasting effects linked to the underlying silicon technologies. In this article we illustrate and compare the main technological options available in multiprocessing for mobile platforms, highlighting the synergies between multiprocessing and the disruptive FD-SOI silicon technology used in the upcoming ST-Ericsson products. We will show that compared to personal computers (PCs), the performance of single-processors in mobile platforms is still growing and how, from a software performance perspective, it is more profitable today to focus on faster dual-core rather than slower quad-core processors. We will also demonstrate how FD-SOI benefits dual-core processors even more by providing higher frequency for the same power consumption, together with a wider range of energy efficient operating modes. All of this results in a simpler, cheaper and more effective solution than competing homogeneous and heterogeneous quad-processors. -
FAN53525 3.0A, 2.4Mhz, Digitally Programmable Tinybuck® Regulator
FAN53525 — 3.0 A, 2.4 MHz, June 2014 FAN53525 3.0A, 2.4MHz, Digitally Programmable TinyBuck® Regulator Digitally Programmable TinyBuck Digitally Features Description . Fixed-Frequency Operation: 2.4 MHz The FAN53525 is a step-down switching voltage regulator that delivers a digitally programmable output from an input . Best-in-Class Load Transient voltage supply of 2.5 V to 5.5 V. The output voltage is 2 . Continuous Output Current Capability: 3.0 A programmed through an I C interface capable of operating up to 3.4 MHz. 2.5 V to 5.5 V Input Voltage Range Using a proprietary architecture with synchronous . Digitally Programmable Output Voltage: rectification, the FAN53525 is capable of delivering 3.0 A - 0.600 V to 1.39375 V in 6.25 mV Steps continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10 mA. The regulator operates at Programmable Slew Rate for Voltage Transitions . a nominal fixed frequency of 2.4 MHz, which reduces the . I2C-Compatible Interface Up to 3.4 Mbps value of the external components to 330 nH for the output inductor and as low as 20 µF for the output capacitor. PFM Mode for High Efficiency in Light Load . Additional output capacitance can be added to improve . Quiescent Current in PFM Mode: 50 µA (Typical) regulation during load transients without affecting stability, allowing inductance up to 1.2 µH to be used. Input Under-Voltage Lockout (UVLO) ® At moderate and light loads, Pulse Frequency Modulation Regulator Thermal Shutdown and Overload Protection . (PFM) is used to operate in Power-Save Mode with a typical . -
Embedded Computer Solutions for Advanced Automation Control «
» Embedded Computer Solutions for Advanced Automation Control « » Innovative Scalable Hardware » Qualifi ed for Industrial Software » Open Industrial Communication The pulse of innovation » We enable Automation! « Open Industrial Automation Platforms Kontron, one of the leaders of embedded computing technol- ogy has established dedicated global business units to provide application-ready OEM platforms for specifi c markets, includ- ing Industrial Automation. With our global corporate headquarters located in Germany, Visualization & Control Data Storage Internet-of-Things and regional headquarters in the United States and Asia-Pa- PanelPC Industrial Server cifi c, Kontron has established a strong presence worldwide. More than 1000 highly qualifi ed engineers in R&D, technical Industrie 4.0 support, and project management work with our experienced sales teams and sales partners to devise a solution that meets M2M SYMKLOUD your individual application’s demands. When it comes to embedded computing, you can focus on your core capabilities and rely on Kontron as your global OEM part- ner for a successful long-term business relationship. In addition to COTS standards based products, Kontron also of- fers semi- and full-custom ODM services for a full product port- folio that ranges from Computer-on-Modules and SBCs, up to embedded integrated systems and application ready platforms. Open for new technologies Kontron provides an exceptional range of hardware for any kind of control solution. Open for individual application Kontron systems are available either as readily integrated control solutions, or as open platforms for customers who build their own control applications with their own look and feel. Open for real-time Kontron’s Industrial Automation platforms are open for Real- Industrial Ethernet Time operating systems like VxWorks and Linux with real time extension. -
Low-Power Ultra-Small Edge AI Accelerators for Image Recog- Nition with Convolution Neural Networks: Analysis and Future Directions
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 doi:10.20944/preprints202107.0375.v1 Review Low-power Ultra-small Edge AI Accelerators for Image Recog- nition with Convolution Neural Networks: Analysis and Future Directions Weison Lin 1, *, Adewale Adetomi 1 and Tughrul Arslan 1 1 Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected]; [email protected] * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, ro- botics, and remote sensing satellites. These applications not only require meeting performance tar- gets but also meeting strict reliability and resilience constraints due to operations in harsh and hos- tile environments. Numerous research articles have been proposed, but not all of these include full specifications. Most of these tend to compare their architecture with other existing CPUs, GPUs, or other reference research. This implies that the performance results of the articles are not compre- hensive. Thus, this work lists the three key features in the specifications such as computation ability, power consumption, and the area size of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. We introduce the actual evaluation results showing the trend in edge AI accelerator design about key performance metrics to guide designers on the actual performance of existing edge AI acceler- ators’ capability and provide future design directions and trends for other applications with chal- lenging constraints. -
Tegra Linux Driver Package
TEGRA LINUX DRIVER PACKAGE RN_05071-R32 | March 18, 2019 Subject to Change 32.1 Release Notes RN_05071-R32 Table of Contents 1.0 About this Release ................................................................................... 3 1.1 Login Credentials ............................................................................................... 4 2.0 Known Issues .......................................................................................... 5 2.1 General System Usability ...................................................................................... 5 2.2 Boot .............................................................................................................. 6 2.3 Camera ........................................................................................................... 6 2.4 CUDA Samples .................................................................................................. 7 2.5 Multimedia ....................................................................................................... 7 3.0 Top Fixed Issues ...................................................................................... 9 3.1 General System Usability ...................................................................................... 9 3.2 Camera ........................................................................................................... 9 4.0 Documentation Corrections ..................................................................... 10 4.1 Adaptation and Bring-Up Guide ............................................................................ -
NVIDIA Tegra 4 Family CPU Architecture 4-PLUS-1 Quad Core
Whitepaper NVIDIA Tegra 4 Family CPU Architecture 4-PLUS-1 Quad core 1 Table of Contents ...................................................................................................................................................................... 1 Introduction .............................................................................................................................................. 3 NVIDIA Tegra 4 Family of Mobile Processors ............................................................................................ 3 Benchmarking CPU Performance .............................................................................................................. 4 Tegra 4 Family CPUs Architected for High Performance and Power Efficiency ......................................... 6 Wider Issue Execution Units for Higher Throughput ............................................................................ 6 Better Memory Level Parallelism from a Larger Instruction Window for Out-of-Order Execution ...... 7 Fast Load-To-Use Logic allows larger L1 Data Cache ............................................................................. 8 Enhanced branch prediction for higher efficiency .............................................................................. 10 Advanced Prefetcher for higher MLP and lower latency .................................................................... 10 Large Unified L2 Cache ....................................................................................................................... -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
130 Demystifying Arm Trustzone: a Comprehensive Survey
Demystifying Arm TrustZone: A Comprehensive Survey SANDRO PINTO, Centro Algoritmi, Universidade do Minho NUNO SANTOS, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa The world is undergoing an unprecedented technological transformation, evolving into a state where ubiq- uitous Internet-enabled “things” will be able to generate and share large amounts of security- and privacy- sensitive data. To cope with the security threats that are thus foreseeable, system designers can find in Arm TrustZone hardware technology a most valuable resource. TrustZone is a System-on-Chip and CPU system- wide security solution, available on today’s Arm application processors and present in the new generation Arm microcontrollers, which are expected to dominate the market of smart “things.” Although this technol- ogy has remained relatively underground since its inception in 2004, over the past years, numerous initiatives have significantly advanced the state of the art involving Arm TrustZone. Motivated by this revival ofinter- est, this paper presents an in-depth study of TrustZone technology. We provide a comprehensive survey of relevant work from academia and industry, presenting existing systems into two main areas, namely, Trusted Execution Environments and hardware-assisted virtualization. Furthermore, we analyze the most relevant weaknesses of existing systems and propose new research directions within the realm of tiniest devices and the Internet of Things, which we believe to have potential to yield high-impact contributions in the future. CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems;•Secu- rity and privacy → Systems security; Security in hardware; Software and application security; Additional Key Words and Phrases: TrustZone, security, virtualization, TEE, survey, Arm ACM Reference format: Sandro Pinto and Nuno Santos. -
Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions
electronics Review Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions Weison Lin *, Adewale Adetomi and Tughrul Arslan Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected] (A.A.); [email protected] (T.A.) * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, robotics, and remote sensing satellites. These applications require meeting performance targets and resilience constraints due to the limited device area and hostile environments for operation. Numerous research articles have proposed the edge AI accelerator for satisfying the applications, but not all include full specifications. Most of them tend to compare the architecture with other existing CPUs, GPUs, or other reference research, which implies that the performance exposé of the articles are not comprehensive. Thus, this work lists the essential specifications of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. The actual performance, implementation, and productized examples of edge AI accelerators are released in this paper. We introduce the evaluation results showing the edge AI accelerator design trend about key performance metrics to guide designers. Citation: Lin, W.; Adetomi, A.; Last but not least, we give out the prospect of developing edge AI’s existing and future directions Arslan, T. Low-Power Ultra-Small Edge AI Accelerators for Image and trends, which will involve other technologies for future challenging constraints. -
Android Benchmarks - Geekbench Browser 11/05/2015 6:27 Pm Geekbench Browser Geekbench 3 Geekbench 2 Benchmark Charts Search Geekbench 3 Results Sign up Log In
Android Benchmarks - Geekbench Browser 11/05/2015 6:27 pm Geekbench Browser Geekbench 3 Geekbench 2 Benchmark Charts Search Geekbench 3 Results Sign Up Log In COMPARE Android Benchmarks Processor Benchmarks Mac Benchmarks iOS Benchmarks Welcome to Primate Labs' Android benchmark chart. The data on this chart is gathered from user-submitted Geekbench 3 results from the Geekbench Browser. Android Benchmarks Geekbench 3 scores are calibrated against a baseline score of 2500 (which is the score of an Intel Core i5-2520M @ 2.50 GHz). Higher scores are better, with double the score indicating double the performance. SHARE If you're curious how your computer compares, you can download Geekbench 3 and run it on your computer to find out your score. Tweet 0 This chart was last updated 30 minutes ago. 139 Like 891 Single Core Multi-Core Device Score HTC Nexus 9 1890 NVIDIA Tegra K1 Denver 2499 MHz (2 cores) Samsung Galaxy S6 edge 1306 Samsung Exynos 7420 1500 MHz (8 cores) Samsung Galaxy S6 1241 Samsung Exynos 7420 1500 MHz (8 cores) Samsung Galaxy Note 4 1164 Samsung Exynos 5433 1300 MHz (8 cores) NVIDIA SHIELD Tablet 1087 NVIDIA Tegra K1 2218 MHz (4 cores) Motorola DROID Turbo 1052 Qualcomm APQ8084 Snapdragon 805 2649 MHz (4 cores) Samsung Galaxy S5 Plus 1027 Qualcomm APQ8084 Snapdragon 805 2457 MHz (4 cores) Motorola Nexus 6 1016 Qualcomm APQ8084 Snapdragon 805 2649 MHz (4 cores) Samsung Galaxy Note 4 986 Qualcomm APQ8084 Snapdragon 805 2457 MHz (4 cores) Motorola Moto X (2014) 970 Qualcomm MSM8974AC Snapdragon 801 2457 MHz (4 cores) HTC One (M8x) -
(12) Patent Application Publication (10) Pub. No.: US 2015/0254416 A1 Shih (43) Pub
US 20150254416A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0254416 A1 Shih (43) Pub. Date: Sep. 10, 2015 (54) METHOD AND SYSTEM FOR PROVIDING (52) U.S. Cl. MEDICAL ADVICE CPC .......... G06F 19/3425 (2013.01); G06F 19/322 (2013.01) (71) Applicant: ClickMedix, Gaithersburg, MD (US) (72) Inventor: Ting-Chih Shih, Rockville, MD (US) (57) ABSTRACT (73) Assignee: CLICKMEDIX, Gaithersburg, MD A method and system for providing medical services wherein (US) a server establishes a wireless connection with a mobile device or computer of a user. The mobile device or computer (21) Appl. No.: 14/199,559 has already been provided with an application for the entry of (22) Filed: Mar. 6, 2014 user information. The server receives encrypted user infor mation from the mobile device or computer, decrypts the user Publication Classification information, and forwards the user information to experts selected on the basis of the user information. The server (51) Int. Cl. collects responses from the experts, and provides expert G06F 9/00 (2006.01) advice to the user of the mobile device or computer. NTERNET SERVICE SERVER PROVIDER 25 Patent Application Publication Sep. 10, 2015 Sheet 1 of 10 US 2015/0254416 A1 S. OO L gy2 O ch : 2 > S 2 v 9 --- ---m-m- Patent Application Publication Sep. 10, 2015 Sheet 2 of 10 US 2015/0254416 A1 ZI IZ| -----———————? |------ OT Patent Application Publication Sep. 10, 2015 Sheet 3 of 10 US 2015/0254416 A1 dXB:LHB Patent Application Publication Sep. 10, 2015 Sheet 4 of 10 US 2015/0254416 A1 ——— ?II || | | || | |NOIIVWHOHNI Å ||GO?I Nodisva HITV3HLNBILVd ______.ISOH______ ~~~~}dno89v10BTES!| S183dXBHO| |~\~~~~|||| †7·314 || | | || | ZO? A | } }} | }{ | l Patent Application Publication US 2015/0254416 A1 ?euauss)| Patent Application Publication Sep.