Ice Throw Risk Assessment for the Proposed Kingdom Community Wind Power Project

Total Page:16

File Type:pdf, Size:1020Kb

Ice Throw Risk Assessment for the Proposed Kingdom Community Wind Power Project Attachment Holland:DAW 1-112 Exh. Pet.-ML-3 ICE THROW RISK ASSESSMENT FOR THE PROPOSED KINGDOM COMMUNITY WIND POWER PROJECT Client Green Mountain Power Corp. Contact Charles Pughe Document No 41404/AR/02A Classification Client’s Discretion Status Final Date 17 November 2010 Authors: Y Boucetta / P Heraud Checked by: MLeblanc Approved by: B Ait-Driss Holland-DAW_1-112-000 Page 1 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A IMPORTANT NOTICE AND DISCLAIMER This report is intended for the use of the Client on whose instructions it has been prepared, and who has entered into a written agreement directly with Garrad Hassan America, Inc. (“GH”). GH’s liability to the Client is set out in that agreement. GH shall have no liability to third parties for any use whatsoever without the express written authority of GH. The report may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated in this report, and may not be disclosed in any public offering memorandum without the express written consent of GH. This report has been produced from information relating to dates and periods referred to in this report. The report does not imply that any information is not subject to change. Key To Document Classification Strictly Confidential : Recipients only Private and Confidential : For disclosure to individuals directly concerned within the recipient’s organisation Commercial in Confidence : Not to be disclosed outside the recipient’s organisation GH only : Not to be disclosed to non GH staff Client’s Discretion : Distribution at the discretion of the client subject to contractual agreement Published : Available to the general public © 2009 Garrad Hassan America, Inc. Holland-DAW_1-112-000 Page 2 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A CONTENTS Page 1 INTRODUCTION 1 2 ASSESSMENT SUBJECT 2 3 ICE THROW ASSESSMENT METHODOLOGY 4 4 DATA SOURCES AND OTHER INPUTS 6 4.1 Wind climate during icing events 6 4.2 Control methodologies 6 4.3 Assessment guidelines and data 7 5 RESULTS OF ICE THROW ASSESSMENT 9 5.1 Wind turbine icing 9 5.2 Technical feasibility of icing during operation 9 5.3 Individual risk 10 5.4 Control mitigation 16 6 CONCLUSIONS 17 REFERENCES 18 LIST OF TABLES 19 LIST OF FIGURES 20 Holland-DAW_1-112-000 Page 3 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A 1 INTRODUCTION Garrad Hassan America, Inc. (“GH”) has been contracted by Green Mountain Power Corporation (the “Client”) to undertake an assessment of the risk of ice fragments shed from wind turbines striking members of the public in the vicinity of some turbines from the proposed Kingdom Community Wind power project (the “Project”). The results of this work are presented in this report. 1 Holland-DAW_1-112-000 Page 4 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A 2 ASSESSMENT SUBJECT The proposed Project site is located Southwest of Orleans, Vermont. The site elevation is approximately between 680 m to 800 m. The Project consists of 21 wind turbines. As there is still uncertainty regarding the wind turbine models of the Project, The Ice Throw Analysis has been performed for three models of wind turbine, namely Siemens SWT-101, Vestas V112 and GE 2.75-100 model. The worst case scenario with the Vestas V112, the turbine model with the largest rotor diameter, is presented in this report. The key parameters of the wind turbine model are summarized in Table 2.1. Wind turbine model Vestas V112 RatedPower 3MW Rotor diameter 112 m Hubheight 84m Cut-in wind speed 3 m/s Cut-out wind speed 25 m/s Nominal rotor speed 17.7 rpm Nominal tip speed 103.7 m/s Table 2.1 Wind turbine parameters This assessment is focused primarily on the area surrounding each turbine as presented in Figure 2.1. Of particular interest is the risk of ice throw on the surrounding parcels from wind turbines 1, 5, 6, 8, 15, 19, 20 and 21, which are the closest to non-participating landowner property lines. 2 Holland-DAW_1-112-000 Page 5 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A Figure 2.1 Proposed locations and property line 3 Holland-DAW_1-112-000 Page 6 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A 3 ICE THROW ASSESSMENT METHODOLOGY The assessment methodology used herein is based on that developed by GH in conjunction with the Finnish Meteorological Institute and Deutsches Windenergie-Institut as part of a research project on the implementation of wind energy in cold climates (WECO) primarily funded by the European Union and also supported in part by the United Kingdom Department of Trade and Industry [1]. The guidelines for safety assessments in relation to ice throw were developed by GH in the WECO project and that work was summarized in a series of conference papers [2, 3, and 4]. These guidelines have been applied to the Project site by considering the proposed turbine type, the terrain of the site and surrounding area, and assumptions for human presence in the surrounding area. The overall approach is presented schematically in Figure 3.1 and is based on a staged approach: Determine the periods when ice accretion on structures is technically possible, based on historical climatic observations. Within those periods, determine when the wind speed conditions are within the operational range of the wind turbines. Within the resultant periods, if applicable, exclude those periods when the wind turbines will be shut down automatically by the wind turbine control system or by remote operators. Based on an estimate from the above of the amount of icing, use guidelines to arrive at probability of fragments landing at the distances from the turbines which are of interest. Where information is available, estimate probability of members of the public being present within the distances from the turbine which are being considered. Arrive at combined probability of members of the public being hit by ice fragments. Compare that probability to a suitable benchmark risk such as natural hazards. It is our professional opinion that this methodology is sound and provides an appropriate analysis of the Project. 4 Holland-DAW_1-112-000 Page 7 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A Historical reference station data Temperature Hours when icing Humidity conditions are Adjust to site Cloud cover present Cloud base Precipitation Observed evidence Validation from area (possibly anecdotal) Subset of hours when wind speed is Concurrent wind Adjust to site in turbine operating speed range Likelihood of unplanned shutdown due to ice (mainly sensor icing) Subset of hours Specification of when turbine is turbine and "ice" operating control system Shutdown by ice prevention / detection control system Assess risk of ice throw at distance of interest Estimate probability of public presence Estimate risk of Revise control people being struck strategy by ice fragments Evidence of fragment Acceptable risk? size and mass No Yes No further action Figure 3.1 Ice throw risk assessment procedure 5 Holland-DAW_1-112-000 Page 8 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A 4 DATA SOURCES AND OTHER INPUTS 4.1 Wind climate during icing events Climatic data recorded at the site during icing events have been provided to GH by the client. The data was recorded for each 10-minute period from sensors mounted on the meteorological tower (mast 808) from June 2003 through May 2008. A joint wind speed and wind direction table of the icing period (November to March) was derived from these measurements and used as the base meteorological input for this study. 4.2 Control methodologies Ice detectors are typically mounted to the nacelle of a turbine or nearby meteorological tower and monitored by the wind farm control system, triggering an automatic or remote manual shutdown of the wind farm in the event that icing conditions are detected. It is also generally accepted in the wind industry that any ice build up on the blades of an operating turbine will lead to additional vibration. This is caused by both mass and aerodynamic imbalances. All machines, including the Vestas V112, are equipped with vibration monitors, which will shut the machine down during these periods. Depending on the ice throw risk, it may be appropriate to implement a winter operating protocol that will curtail the operating of wind turbines in the event of icing and when extreme weather conditions present unsafe conditions for the general public. This typically involves operator or automatic system shut down under one or more of the following circumstances: The installed ice monitoring device(s) and heated wind sensors (installation subject to reliability testing) detect unsafe conditions are present due to icing conditions; Ice accretion is recognized by the remote or on site operator; Air temperature, relative humidity and other meteorological conditions at the site are conducive to ice formation; Air temperature is several degrees above 0 degrees C after icing conditions; and Any other weather conditions which appear unsafe. During any of these events, a typical operating protocol will provide that turbines which present a safety risk to the public are to be placed in Pause mode, in which the units are inoperative. 6 Holland-DAW_1-112-000 Page 9 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A 4.3 Assessment guidelines and data The guidelines produced in the WECO project were based on a combination of numerical modeling and observations. The numerical modeling involved Monte-Carlo simulations of a range of scenarios of ice building up on a wind turbine and being shed from the rotor blades.
Recommended publications
  • 3,549 Mw Yt 0.810 Mw
    Canada Wind Farms As of October 2010 Current Installed Capacity: 3,549 MW YT 0.810 MW NL 54.7 MW BC 656 MW 103.5 MW AB 104 MW SK MB 171.2 MW ON 663 MW 1,298 MW QC PE 164 MW NB 195 MW NS Courtesy of 138 MW Alberta COMPLETED WIND FARMS Installed Capacity Project Project Power Turbine # Project Name (in MW) Developer Owner Purchaser Manufacturer Year Online 1 Cardston Municipal District Magrath 30 Suncor, Enbridge, EHN Suncor, Enbridge, EHN Suncor, Enbridge, EHN GE Wind 2004 McBride Lake 75.24 Enmax, TransAlta Wind Enmax, TransAlta Wind Enmax, TransAlta Wind Vestas 2007 McBride Lake East 0.6 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2001 Soderglen Wind Farm 70.5 Nexen/Canadian Hydro Nexen/Canadian Hydro Nexen/Canadian Hydro GE 2006 Developers, Inc. Developers, Inc. Developers, Inc. Waterton Wind Turbines 3.78 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 1998 2 Pincher Municipal District Castle River Wind Farm 0.6 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 1997 Castle River Wind Farm 9.9 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2000 Castle River Wind Farm 29.04 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2001 Cowley Ridge 21.4 Canadian Hydro Canadian Hydro Canadian Hydro Kenetech 1993/1994 Developers, Inc. Developers, Inc. Developers, Inc. Cowley Ridge North Wind Farm 19.5 Canadian Hydro Canadian Hydro Canadian Hydro Nordex 2001 Developers, Inc. Developers, Inc. Developers, Inc. Lundbreck 0.6 Lundbreck Developments Lundbreck Developments Lundbreck Developments Enercon 2001 Joint Venture A Joint Venture A Joint Venture A Kettles Hill Phase I 9 Enmax Enmax Enmax Vestas 2006 Kettles Hill Phase II 54 Enmax Enmax Enmax Vestas 2007 Old Man River Project 3.6 Alberta Wind Energy Corp.
    [Show full text]
  • Powering Renewable Energy in Canada and Abroad
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by bepress Legal Repository WINDWIND ENERGY AND ITS IMPACTIMPACT ONON FUTURE ENVIRONMENTALENVIRONMENTAL POLICY PLANNINGPLANNING:::: POWERINGPOWERING RENEWABLERENEWABLE ENERGY IN CANADA AND ABROAD byby KamaalKamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy.
    [Show full text]
  • Wind Concerns Ontario Briefing File
    Briefing File Wind Concerns Ontario January 28, 2009 Contents: 1. An introduction to Wind Concerns Ontario – when formed, constituent groups, and executive officers. 2. The issue of public safety risk posed by wind turbines. 3. The issue of noise and its impact on people posed by wind turbines. 4. The issue of health effects posed by wind turbines. 5. The effect on municipal and provincial economies posed by wind turbines. 6. The impact of wind turbines on the ability to meet Ontario’s energy needs. 7. The impact of wind turbines on Ontario’s and Canada’s environmental conditions. 8. Summary of Issues that Need Resolution. _______________________________________________________________________ MAIN LEVELS OF CONCERN 1. The adverse effects of industrial wind on the public’s health, well being and safety and environmental impacts on birds, wetlands, conservation areas and shorelines. (Noting the absence of a full environmental assessment for any project to date.) 2. Proper land use regulations such as used for hydroelectric in order to protect rural economies, historic landscapes, quality of life and remove disruptive change from rural to industrial. 3. Economic sustainability. Financial burden on Ontario taxpayers, municipalities, manufacturers and businesses through high costs of wind generated power. 4. How do these developments fit in with Ontario’s economic and industrial strategy? WHAT DOES WIND CONCERNS ONTARIO WANT? 1. That the Province of Ontario immediately put in place a moratorium on further industrial wind turbine development to stay in effect until the completion and public review of a comprehensive and scientifically robust health/noise study of the effects of wind turbines.
    [Show full text]
  • 2021 Renewable Energy Standard Report with Appendices
    Report on the Implementation and Cost- Effectiveness of the P.A. 295 Renewable Energy Standard February 16, 2021 Dan Scripps, Chair Tremaine Phillips, Commissioner Katherine Peretick, Commissioner Contents Executive Summary ......................................................................................................................................................... i Introduction....................................................................................................................................................................... 1 Renewable Energy Plans and Commission Approval ................................................................................... 1 Renewable Energy Cost Reconciliation Cases ................................................................................................. 1 Summary of Renewable Energy Data Collected .................................................................................................. 2 Renewable Energy Credit Requirements – 2019 Compliance ................................................................... 2 Status of Renewable Energy ....................................................................................................................................... 5 Renewable Energy Growth in Addition to the Renewable Energy Standard....................................... 9 Voluntary Green Pricing Programs ................................................................................................................. 9 Utility Integrated Resource Plans
    [Show full text]
  • What Role for Wind Power?
    Canada’s Energy Future: What Role for Wind Power? Jim Prall Systems Programmer The Edward S. Rogers Sr.. Dept. Of Electrical and Computer Engineering University of Toronto [email protected] http://www.eecg.utoronto.ca/~prall part-time student of climatology (etc.) The Wind Power Industry • Wind power the fastest growing sector – As high as 30% per year growth • Already a mature industry worldwide – Dozens of major manufacturers – Consolidation under way – Mature designs now in mass production • Wind power prices already competitive in many markets, getting closer elsewhere Wind Power Worldwide 2003 Rated capacity, MW Germany 14609 Spain 6202 Denmark supplying 18% of Denmark 3110 national demand from wind! Netherlands 912 Italy 904 USA 4685 United Kingdom 649 Canada 322 Austria 415 Sweden 399 Greece 375 Portugal 299 France 239 Ireland 186 Wind Power in Ontario Date in rated Operator Location Service Equipment kW Status 1x Tacke TW-600 CWM Ontario Hydro Tiverton 1995/10 (600 kW) 600 Active O.P.G. Pickering 2001/10 1x Vestas V80 (1,800 kW) 1,800 Active Private Port Albert 2001/12 1x Vestas V47 (660 kW) 660 Active Huron Wind Kincardine 2002/11 5x Vestas V80 9,000 Active Sky Generation Ferndale 2002/11 1x Vestas V80 1,800 Active Source: http://www.canwea.ca/CanadianProduction.html Wind Power in Canada • Canada has decent wind resources • Yet wind industry not as far along here • Why not? – Cheap power • fossil fuels historically subsidized – Limited political support so far – Provincial utilities slow to embrace wind – Hydro & nuclear power well developed • Both avoid air quality & CO2 concerns • This may mean less public pressure for wind – Lenders unfamiliar with wind charge more Phasing Out Coal Smog KILLS thousands in Canada each year http://www.hc-sc.gc.ca/pphb-dgspsp/publicat/rdc-mrc01/pdf/rdc0901e.pdf http://eastern.sierraclub.ca/campaign_coal_fired_power_is_killing_us.shtml http://www.oma.org/phealth/report/airq001.pdf Phasing Out Coal • Smog kills almost 2000 each year • Coal power plants a big problem – More prevalent in U.S.
    [Show full text]
  • Wind Energy and Its Impact on Future Environmental Policy Planning: Powering Renewable Energy in Canada and Abroad
    WIND ENERGY AND ITS IMPACT ON FUTURE ENVIRONMENTAL POLICY PLANNING: POWERING RENEWABLE ENERGY IN CANADA AND ABROAD by Kamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy. Part III discusses the technology behind wind energy generation.
    [Show full text]
  • Renewable Energy Qualifications and Project Experience | Sargent & Lundy
    Renewable Energy Qualifications and Experience Wind Power | Solar PV | Concentrating Solar Power | Alternative Fuels, Recycling, & Biomass | Geothermal | Hydroelectric | Energy Storage | Hybrid Power Plants & Microgrids 55 East Monroe | Chicago, Illinois 60603-5780 | 312.269.2000 | www.sargentlundy.com Renewable Energy Project Experience Qualifications and Experience Contents CONTENTS About Sargent & Lundy .............................................................................................................. 1 Wind Power ................................................................................................................................. 2 Due Diligence and Independent Engineering ............................................................................................ 3 Selected Recent Project Experience ............................................................................................... 3 Additional Project Experience .......................................................................................................... 7 Owner’s Engineer and Technical Advisor ............................................................................................... 15 Selected Recent Project Experience ............................................................................................. 15 Additional Project Experience ........................................................................................................ 16 Conceptual Design and Studies .............................................................................................................
    [Show full text]
  • Nom Du Projet Province Année Puissance Totale (Mégawatts)
    Puissance totale Nom du projet Province Année (mégawatts) Bear Mountain Wind Park BC 2009 102.0 The Eye of the Wind Turbine BC 2010 1.5 Dokie Wind Project BC 2011 144.0 Quality Wind BC 2012 142.2 Cape Scott BC 2013 99.0 Optimist Wind Energy Wind FarmProject AB 1993 0.2 Castle River Wind Farm AB 1997 0.6 Waterton Wind Turbines AB 1998 0.6 Waterton Wind Turbines AB 1998 1.2 Castle River Wind Farm AB 2000 9.9 Waterton Wind Turbines AB 2000 0.7 Castle River Wind Farm AB 2001 29.0 Cowley North AB 2001 19.5 Lundbreck Wind Farm AB 2001 0.6 McBride Lake East AB 2001 0.7 Sinnott Wind Farm AB 2001 6.5 Waterton Wind Turbines AB 2001 0.7 Weather Dancer 1 AB 2001 0.9 Summerview Wind Farm AB 2002 1.8 Waterton Wind Turbines AB 2002 0.7 McBride Lake AB 2003 75.2 Magrath AB 2004 30.0 Summerview Wind Farm AB 2004 68.4 Optimist Wind Energy Wind Farm Project AB 2004 0.8 MacLeod Flats AB 2004 3.0 Chin Chute Wind Farm AB 2006 30.0 Kettles Hill Phase I AB 2006 9.0 Soderglen Wind Farm AB 2006 70.5 Kettles Hill Phase II AB 2007 54.0 Old Man River Project AB 2007 3.6 Taber Wind Farm AB 2007 85.1 Blue Trail AB 2009 66.0 Summerview Wind Farm2 AB 2010 66.0 Ardenville Wind Farm AB 2010 69.0 Ghost Pine Wind Farm AB 2010 81.6 Wintering Hills AB 2011 88.0 Castle Rock Ridge AB 2012 75.9 Halkirk Wind AB 2012 149.4 Blackspring Ridge Wind Project AB 2014 298.8 Box Springs Wind Project AB 2014 6.0 Old Man 2 Wind Farm AB 2014 46.0 Bull Creek Wind Farm AB 2015 29.2 Cypress Wind Power Facility SK 2001 5.9 Sunbridge SK 2001 11.2 Cypress Wind Power Facility SK 2003 4.6 Centennial Wind Power Facility SK 2006 149.4 Red Lily Wind Energy Project SK 2011 26.4 Cowessess First Nation Wind and Storage Demonstration Project SK 2013 0.8 Morse Wind Project SK 2015 23.0 St.
    [Show full text]
  • Guía Para El Desarrollo De Proyectos Comunitarios De Energía Renovable En América Del Norte
    guía Guía para el desarrollo de proyectos comunitarios de energía renovable en América del Norte Comisión para la Cooperación Ambiental El presente documento de antecedentes fue elaborado por ENVINT Consulting y por la Asociación de Energía Sustentable de Ontario (Ontario Sustainable Energy Association, OSEA) para el Secretariado de la Comisión para la Cooperación Ambiental. La información que contiene es responsabilidad de los autores y no necesariamente refleja las opiniones de la CCA o de los gobiernos de Canadá, Estados Unidos o México. Se permite la reproducción total o parcial de este documento, en cualquier forma o medio, con propósitos educativos y sin fines de lucro, sin que sea necesario obtener autorización expresa por parte del Secretariado de la CCA, siempre y cuando se cite debidamente la fuente. La CCA apreciará que se le envíe una copia de toda publicación o material que utilice este trabajo como fuente. Edición al cuidado del Departamento de Comunicación y Difusión del Secretariado de la CCA. Particularidades de la publicación Tipo: documento de referencia Fecha: marzo de 2010 Idioma original: inglés Número de registro AC: 06-08 Procedimientos de revisión y aseguramiento de calidad: Revisión de las Partes: 9 de julio – 6 de agosto de 2007; 21 de diciembre de 2007 – 11 de enero de 2008 © Comisión para la Cooperación Ambiental, 2010 ISBN 978-2-923358-76-5 (versión impresa); ISBN 978-2-923358-77-2 (versión electrónica) Available in English: ISBN 978-2-923358-74-1 (print version); ISBN 978-2-923358-75-8 (electronic version) Depósito legal – Bibliothèque et Archives nationales du Québec, 2010 Depósito legal – Library and Archives Canada, 2010 Impreso en Canadá, en papel Rolland Enviro100 compuesto en su totalidad con fibras recicladas posconsumo, procesadas sin cloro, y fabricado con energía a base de biogás.
    [Show full text]
  • Wind Turbine Public Safety Risk, Direct and Indirect Health Impacts
    Freely Available Online JOURNAL OF ENERGY CONSERVATION ISSN NO: 0000-0000 Research Article DOI : COMING SOON Wind Turbine Public Safety Risk, Direct and Indirect Health Impacts William K.G. Palmer1,* 1Independent Researcher Abstract Wind turbines are often perceived as benign. This can be attributed to the population majority dwelling in urban locations distant from most wind turbines. Society may understate the risk to individuals living near turbines due to an overstatement of the perceived benefits of turbines, and an understatement of the risk of injury from falling turbine parts, or shed ice. Flaws in risk calculation may be attributed to a less than fully developed safety culture. Indications of this are the lack of a comprehensive industry failure database, and safety limits enabling the industry growth, but not protective of the public. A comprehensive study of wind turbine failures and risks in the Canadian province of Ontario gives data to enable validation of existing failure models. Failure probabilities are calculated, to show risk on personal property, or in public spaces. Repeated failures, and inadequate safety separation show public safety is not currently assured. A method of calculating setbacks from wind turbines to mitigate public risk is shown. Wind turbines with inadequate setbacks can adversely impact public health both directly from physical risk and indirectly by irritation from loss of safe use of property. Physical public safety setbacks are separate from larger setbacks required to prevent irritation from noise and other stressors, particularly when applied to areas of learning, rest and recuperation. The insights provided by this paper can assist the industry to enhance its image and improve its operation, as well as helping regulators set safety guidelines assuring protection of the public.
    [Show full text]
  • (Megawatts) Bear Mountain Wind Park BC 2009 102.0 the Eye Of
    Project Name Province Year Total Capacity (Megawatts) Bear Mountain Wind Park BC 2009 102.0 The Eye of the Wind Turbine BC 2010 1.5 Dokie Wind Project BC 2011 144.0 Quality Wind BC 2012 142.20 Cape Scott BC 2013 99.0 Cowley Ridge Wind Farm AB 1993 21.4 Optimist Wind Energy Wind FarmProject AB 1993 0.2 Castle River Wind Farm AB 1997 0.6 Waterton Wind Turbines AB 1998 0.6 Waterton Wind Turbines AB 1998 1.2 Castle River Wind Farm AB 2000 9.9 Waterton Wind Turbines AB 2000 0.7 Castle River Wind Farm AB 2001 29.0 Cowley North AB 2001 19.5 Lundbreck Wind Farm AB 2001 0.6 McBride Lake East AB 2001 0.7 Sinnott Wind Farm AB 2001 6.5 Waterton Wind Turbines AB 2001 0.7 Weather Dancer 1 AB 2001 0.9 Summerview Wind Farm AB 2002 1.8 Waterton Wind Turbines AB 2002 0.7 McBride Lake AB 2003 75.2 Magrath AB 2004 30.0 Summerview Wind Farm AB 2004 68.4 Optimist Wind Energy Wind Farm Project AB 2004 0.8 MacLeod Flats AB 2004 3.0 Chin Chute Wind Farm AB 2006 30.0 Kettles Hill Phase I AB 2006 9.0 Soderglen Wind Farm AB 2006 70.5 Kettles Hill Phase II AB 2007 54.0 Old Man River Project AB 2007 3.6 Taber Wind Farm AB 2007 85.1 Blue Trail AB 2009 66.0 Summerview Wind Farm2 AB 2010 66.0 Ardenville Wind Farm AB 2010 69.0 Ghost Pine Wind Farm AB 2010 81.6 Wintering Hills AB 2011 88.0 Castle Rock Ridge AB 2012 75.9 Halkirk Wind AB 2012 149.4 Blackspring Ridge Wind Project AB 2014 298.8 Box Springs Wind Project AB 2014 6.0 Old Man 2 Wind Farm AB 2014 46.0 Cypress Wind Power Facility SK 2001 5.9 Sunbridge SK 2001 11.2 Cypress Wind Power Facility SK 2003 4.6 Centennial Wind Power Facility SK 2006 149.4 Red Lily Wind Energy Project SK 2011 26.4 Cowessess First Nation Wind and Storage Demonstration Project SK 2013 0.8 Morse Wind Project SK 2015 23.0 St.
    [Show full text]
  • Canrea Installed Capacity for Website 2020-12.Xlsx
    Last updated December 2020. This information is subject to change without notice. To provide additional project details or changes, please contact [email protected]. Total Total Total Total Installation Wind Solar Storage Storage Project Name Technology Province Location Year Capacity Capacity Capacity Duration (MW) (MW AC) (MW AC) (MWh) Haeckel Hill 1 Wind YK 1993 0.15 Whitehorse Optimist Wind Energy Wind Farm Project Wind AB 1993 0.15 Pincher Creek Tiverton Wind Turbine Wind ON 1995 0.60 Tiverton (Bruce County) Castle River Wind Farm (phase 1) Wind AB 1997 0.60 Cowley Ridge Waterton Wind Turbines Wind AB 1998 0.60 Hillspring Waterton Wind Turbines Wind AB 1998 1.20 Hillspring Le Nordais (phase 1‐Cap Chat) Wind QC 1999 56.25 Cap Chat, Gaspesie Le Nordais (phase 2 ‐ Matane) Wind QC 1999 42.75 Matane Haeckel Hill 2 Wind YK 2000 0.66 Whitehorse Castle River Wind Farm (phase 2) Wind AB 2000 9.90 Castle River Waterton Wind Turbines Wind AB 2000 0.66 Hillspring Port Albert Wind Farm Wind ON 2001 0.66 Huron County North Cape Wind Farm ‐ phase 1 Wind PE 2001 5.28 Tignish Cypress Wind Power Facility Wind SK 2001 5.94 Gull Lake Sunbridge Wind SK 2001 11.22 Swift Current Lundbreck Wind Farm Wind AB 2001 0.60 Lundbreck / Pincher Creek Castle River Wind Farm (phase 3) Wind AB 2001 33.50 Castle River McBride Lake East Wind AB 2001 0.66 Fort McLeod Waterton Wind Turbines Wind AB 2001 0.66 Hillspring Weather Dancer Wind AB 2001 0.90 Pincher Creek Cowley North Wind AB 2001 19.50 Pincher Creek; Cowley North; Sinnott Sinnott Wind Farm Wind
    [Show full text]