Modélisation Temporelle De La Consommation Électrique En Analyse Du Cycle De Vie Appliquée Au Contexte Des Tic

Total Page:16

File Type:pdf, Size:1020Kb

Modélisation Temporelle De La Consommation Électrique En Analyse Du Cycle De Vie Appliquée Au Contexte Des Tic UNIVERSITÉ DE MONTRÉAL MODÉLISATION TEMPORELLE DE LA CONSOMMATION ÉLECTRIQUE EN ANALYSE DU CYCLE DE VIE APPLIQUÉE AU CONTEXTE DES TIC ELSA MAURICE DÉPARTEMENT DE GÉNIE CHIMIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE CHIMIQUE) JANVIER 2015 © Elsa Maurice, 2015. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Ce mémoire intitulé: MODÉLISATION TEMPORELLE DE LA CONSOMMATION ÉLECTRIQUE EN ANALYSE DU CYCLE DE VIE APPLIQUÉE AU CONTEXTE DES TIC présenté par : MAURICE Elsa en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquée a été dûment accepté par le jury d’examen constitué de : M. PERRIER Michel, Ph. D., président M. SAMSON Réjean, Ph. D., membre et directeur de recherche Mme LEVASSEUR Annie, Ph. D., membre M. HENRY Olivier, Ph. D., membre iii DÉDICACE À tous les gentils iv REMERCIEMENTS Je voudrais tout d’abord remercier Thomas Dandres et Réjean Samson pour leur encadrement et leur précieuse aide tout au long de ma maîtrise. Merci pour votre confiance, votre disponibilité et vos idées sans lesquelles je n’aurais pu mener ce projet de recherche. Merci Réjean de m’avoir donné l’opportunité d’intégrer cette merveilleuse équipe du CIRAIG. Parallèlement, je voudrais remercier aussi les équipes de l’ETS et d’Ericsson sans lesquels ce projet n’aurait jamais vu le jour et avec qui on a pu approfondir toutes les notions assez abstraites des technologies de l’information et de la communication et mettre à bien un grand projet multidisciplinaire. Un grand merci aussi à l’ensemble des personnes qui ont appuyées ma recherche comme IESO, AESO pour avoir collaborés avec moi dans la phase de collecte de données, le professeur Partovi Nia Vahid pour son aide en statistique et le CRSNG (Conseil de recherches en sciences naturelles et en génie) du Canada pour leur précieux financement. Je tiens également à remercier toutes les personnes qui m’ont accordé leur support, notamment l’ensemble des membres présents et passés du bureau A-685, Fanny, Audrey, Nathan, Gaël et Constant avec qui rires et débats étaient une vraie partie de bonheur. Un grand merci à toute l’équipe du CIRAIG pour leur joie de vivre, leur accueil toujours chaleureux et leur grande richesse d’idées. Ce fut un énorme plaisir de travailler de prêt ou de loin avec vous, j’ai vraiment apprécié les diverses activités auxquelles j’ai pu participer allant des forums étudiants à l’après midi main d’œuvre dans la construction d’une maison éco-responsable. Merci à mes amis proches et à ma famille pour leur soutien sans faille pendant toute ma maîtrise. Enfin merci à tous mes collègues, amis avec qui Montréal fut un moment inoubliable. v RÉSUMÉ La Terre a des ressources limitées. Depuis la révolution industrielle l’Homme utilise des ressources énergétiques non renouvelables qui sont responsables d’impacts environnementaux majeurs sur l’environnement. La production d’énergie est un enjeu de taille pour l’ensemble du développement durable. Les systèmes de technologies de l’information et de la communication (TIC) prennent une place de plus en plus importante dans notre quotidien (internet, téléphonie etc.). À l’échelle de la société il est observé que la croissance des TIC est exponentielle. Les avancées en terme de TIC sont la porte ouverte à de nombreux systèmes intelligents, optimisés et dynamiques, permettant de dématérialiser les services et de lutter contre le réchauffement climatique. Néanmoins, les TIC sont aussi responsables d’une quantité non négligeable d’émissions de gaz à effet de serre GES (3%), induite par leurs consommations électriques importantes. De ce fait, le secteur des TIC collabore activement à mettre en place des mesures visant à réduire les émissions de GES des ses activités. Pour optimiser et évaluer les services de TIC de façon adéquate il est nécessaire d’utiliser des méthodes d’évaluations environnementales qui tiennent compte des particularités des systèmes étudiés. Actuellement, les méthodes de calculs des émissions de GES ne sont pas adaptées aux problématiques dynamiques dont font parties les TIC. En particulier, la variabilité de la production d’électricité demeure absente des lignes directrices des méthodes de calculs des impacts. Au delà de la question de la modélisation des GES c’est toute la problématique temporelle à la fois de la consommation et de la production d’électricité qui se pose. La méthode d’analyse du cycle de vie (ACV) apparaît comme un outil complet d’analyse de l’ensemble des impacts environnementaux mais à l’instar des méthodes de calculs de GES, elle doit aussi être adaptée à des problématiques dynamiques telle que celles de l’électricité et des TIC. Dans le cadre de l’analyse des TIC, il devient donc nécessaire en ACV de modéliser les variations au cours du temps des technologies de production d’électricité susceptibles de faire changer les impacts environnementaux associés à la consommation d’électricité. Ce mémoire de maîtrise propose un nouveau cadre méthodologique afin d’incorporer dans l’ACV les aspects temporels de la production et de la consommation d’électricité. L’étude développe un modèle temporel donnant accès à une série de données de production, d’importations et d’exportations électriques. Le travail est mené autour d’un projet de recherche vi d’implantation d’un réseau interprovincial de « Cloud Computing » au Canada. Le modèle temporel permet de définir historiquement l’impact environnemental par heure induit par la consommation électrique dans trois provinces canadiennes: Alberta, Ontario et Québec. La modélisation temporelle des différentes technologies de production de l’électricité au sein de l’ACV permet d’optimiser le choix du moment d’utilisation de service de TIC, comme par exemple une conversation internet ou encore la maintenance d’un serveur. Ces travaux sont prometteurs car ils autorisent une évaluation environnementale des TIC plus novatrice et permettent l’obtention de données d’inventaire en ACV plus précises. La désagrégation des flux d’inventaire d’électricité en ACV rend le calcul des impacts de la production électrique plus précis à la fois historiquement mais aussi en temps réel. Il a également été mené lors de ce mémoire, une première réflexion sur l’aspect prédictif à très court terme des importations et des exportations électriques, afin de pouvoir anticiper l’optimisation dans le temps d’un service de TIC. À partir des profils historiques de consommation, un modèle prédictif de consommation du Québec a été établi. Le profil environnemental d’un kilowattheure consommé au Québec est étroitement relié aux échanges électriques entre le Québec et les régions avoisinantes. Ces échanges étant corrélés au prix, la température et la demande en puissance, il est possible de prédire le profil environnemental d’un kilowattheure consommé au Québec en fonction de l’évolution de ces paramètres dans le temps. Les résultats obtenus, ouvrent d’importantes perspectives sur l’application prévisionnelle des impacts environnementaux de services comme le « Cloud Computing » ou encore l’ensemble des services dits intelligent comme les « Smart-grid ». Une gestion intelligente entre consommation électrique et impacts environnementaux offre une prise de décision en accords avec le développement durable. vii ABSTRACT Fossil fuels are a scarce energy resource. Since the industrial revolution, mankind uses and abuses of non-renewable energies. They are responsible for many environmental damages. The production of energy is one of the main challenges for a global sustainable development. In our society, we can witness an exponential increase of the usage of the systems of Information and Communication Technologies (ICT) such as Internet, phone calls, etc. The ICT development allows the creation and optimization of many smart systems, the pooling of services, and it also helps damping the climate change. However, because of their electric consumption, the ICT are also responsible for some green house gases (GHG) emissions: 3% in total. This fact gives them the willingness to change in order to limit their GHG emissions. In order to properly evaluate and optimize the ICT services, it is necessary to use some methods of evaluation that comply with the specificity of these systems. Currently, the methods used to evaluate the GHG emissions are not adapted to dynamic systems, which include the ICT systems. The variations of the production of electricity in a day or even a month are not yet taken into account. This problem is far from being restricted to the modelling of GHG emissions, it widens to the global variation in production and consumption of electricity. The Life Cycle Assessment (LCA) method grants useful and complete tools to analyse their environmental impacts, but, as with the GHG computation methods, it should be dynamically adapted. In the ICT framework, the first step to solve this LCA problem is to be able to model the variations in time of the electricity production. This master thesis introduces a new way to include the variation in time of the consumption and production of electricity in LCA methods. First, it generates an historical hourly database of the electricity production and import-export of three Canadian states: Alberta, Ontario and Quebec. Then it develops a model in function of time to predict their electricity consumption. This study is done for a project implementing a « cloud computing » service in between these states. The consumption model then provides information to optimize the best place and time to make use of ICT services such as Internet messaging or server maintenance. This first-ever implementation of time parameter allows more precision and vision in LCA data. The disintegration of electrical inventory flows in LCA refines the effects of the electricity production both historically and in real time. viii Some short-term predictions for the state of Quebec electrical exportations and importations were also computed in this thesis.
Recommended publications
  • 3,549 Mw Yt 0.810 Mw
    Canada Wind Farms As of October 2010 Current Installed Capacity: 3,549 MW YT 0.810 MW NL 54.7 MW BC 656 MW 103.5 MW AB 104 MW SK MB 171.2 MW ON 663 MW 1,298 MW QC PE 164 MW NB 195 MW NS Courtesy of 138 MW Alberta COMPLETED WIND FARMS Installed Capacity Project Project Power Turbine # Project Name (in MW) Developer Owner Purchaser Manufacturer Year Online 1 Cardston Municipal District Magrath 30 Suncor, Enbridge, EHN Suncor, Enbridge, EHN Suncor, Enbridge, EHN GE Wind 2004 McBride Lake 75.24 Enmax, TransAlta Wind Enmax, TransAlta Wind Enmax, TransAlta Wind Vestas 2007 McBride Lake East 0.6 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2001 Soderglen Wind Farm 70.5 Nexen/Canadian Hydro Nexen/Canadian Hydro Nexen/Canadian Hydro GE 2006 Developers, Inc. Developers, Inc. Developers, Inc. Waterton Wind Turbines 3.78 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 1998 2 Pincher Municipal District Castle River Wind Farm 0.6 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 1997 Castle River Wind Farm 9.9 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2000 Castle River Wind Farm 29.04 TransAlta Wind TransAlta Wind TransAlta Wind Vestas 2001 Cowley Ridge 21.4 Canadian Hydro Canadian Hydro Canadian Hydro Kenetech 1993/1994 Developers, Inc. Developers, Inc. Developers, Inc. Cowley Ridge North Wind Farm 19.5 Canadian Hydro Canadian Hydro Canadian Hydro Nordex 2001 Developers, Inc. Developers, Inc. Developers, Inc. Lundbreck 0.6 Lundbreck Developments Lundbreck Developments Lundbreck Developments Enercon 2001 Joint Venture A Joint Venture A Joint Venture A Kettles Hill Phase I 9 Enmax Enmax Enmax Vestas 2006 Kettles Hill Phase II 54 Enmax Enmax Enmax Vestas 2007 Old Man River Project 3.6 Alberta Wind Energy Corp.
    [Show full text]
  • Powering Renewable Energy in Canada and Abroad
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by bepress Legal Repository WINDWIND ENERGY AND ITS IMPACTIMPACT ONON FUTURE ENVIRONMENTALENVIRONMENTAL POLICY PLANNINGPLANNING:::: POWERINGPOWERING RENEWABLERENEWABLE ENERGY IN CANADA AND ABROAD byby KamaalKamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy.
    [Show full text]
  • Wind Concerns Ontario Briefing File
    Briefing File Wind Concerns Ontario January 28, 2009 Contents: 1. An introduction to Wind Concerns Ontario – when formed, constituent groups, and executive officers. 2. The issue of public safety risk posed by wind turbines. 3. The issue of noise and its impact on people posed by wind turbines. 4. The issue of health effects posed by wind turbines. 5. The effect on municipal and provincial economies posed by wind turbines. 6. The impact of wind turbines on the ability to meet Ontario’s energy needs. 7. The impact of wind turbines on Ontario’s and Canada’s environmental conditions. 8. Summary of Issues that Need Resolution. _______________________________________________________________________ MAIN LEVELS OF CONCERN 1. The adverse effects of industrial wind on the public’s health, well being and safety and environmental impacts on birds, wetlands, conservation areas and shorelines. (Noting the absence of a full environmental assessment for any project to date.) 2. Proper land use regulations such as used for hydroelectric in order to protect rural economies, historic landscapes, quality of life and remove disruptive change from rural to industrial. 3. Economic sustainability. Financial burden on Ontario taxpayers, municipalities, manufacturers and businesses through high costs of wind generated power. 4. How do these developments fit in with Ontario’s economic and industrial strategy? WHAT DOES WIND CONCERNS ONTARIO WANT? 1. That the Province of Ontario immediately put in place a moratorium on further industrial wind turbine development to stay in effect until the completion and public review of a comprehensive and scientifically robust health/noise study of the effects of wind turbines.
    [Show full text]
  • Ice Throw Risk Assessment for the Proposed Kingdom Community Wind Power Project
    Attachment Holland:DAW 1-112 Exh. Pet.-ML-3 ICE THROW RISK ASSESSMENT FOR THE PROPOSED KINGDOM COMMUNITY WIND POWER PROJECT Client Green Mountain Power Corp. Contact Charles Pughe Document No 41404/AR/02A Classification Client’s Discretion Status Final Date 17 November 2010 Authors: Y Boucetta / P Heraud Checked by: MLeblanc Approved by: B Ait-Driss Holland-DAW_1-112-000 Page 1 Attachment Holland:DAW 1-112 Garrad Hassan America, Inc. Document : 41404/AR/02A IMPORTANT NOTICE AND DISCLAIMER This report is intended for the use of the Client on whose instructions it has been prepared, and who has entered into a written agreement directly with Garrad Hassan America, Inc. (“GH”). GH’s liability to the Client is set out in that agreement. GH shall have no liability to third parties for any use whatsoever without the express written authority of GH. The report may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated in this report, and may not be disclosed in any public offering memorandum without the express written consent of GH. This report has been produced from information relating to dates and periods referred to in this report. The report does not imply that any information is not subject to change. Key To Document Classification Strictly Confidential : Recipients only Private and Confidential : For disclosure to individuals directly concerned within the recipient’s organisation Commercial in Confidence : Not to be disclosed outside the recipient’s organisation GH only : Not to be disclosed to non GH staff Client’s Discretion : Distribution at the discretion of the client subject to contractual agreement Published : Available to the general public © 2009 Garrad Hassan America, Inc.
    [Show full text]
  • 2021 Renewable Energy Standard Report with Appendices
    Report on the Implementation and Cost- Effectiveness of the P.A. 295 Renewable Energy Standard February 16, 2021 Dan Scripps, Chair Tremaine Phillips, Commissioner Katherine Peretick, Commissioner Contents Executive Summary ......................................................................................................................................................... i Introduction....................................................................................................................................................................... 1 Renewable Energy Plans and Commission Approval ................................................................................... 1 Renewable Energy Cost Reconciliation Cases ................................................................................................. 1 Summary of Renewable Energy Data Collected .................................................................................................. 2 Renewable Energy Credit Requirements – 2019 Compliance ................................................................... 2 Status of Renewable Energy ....................................................................................................................................... 5 Renewable Energy Growth in Addition to the Renewable Energy Standard....................................... 9 Voluntary Green Pricing Programs ................................................................................................................. 9 Utility Integrated Resource Plans
    [Show full text]
  • What Role for Wind Power?
    Canada’s Energy Future: What Role for Wind Power? Jim Prall Systems Programmer The Edward S. Rogers Sr.. Dept. Of Electrical and Computer Engineering University of Toronto [email protected] http://www.eecg.utoronto.ca/~prall part-time student of climatology (etc.) The Wind Power Industry • Wind power the fastest growing sector – As high as 30% per year growth • Already a mature industry worldwide – Dozens of major manufacturers – Consolidation under way – Mature designs now in mass production • Wind power prices already competitive in many markets, getting closer elsewhere Wind Power Worldwide 2003 Rated capacity, MW Germany 14609 Spain 6202 Denmark supplying 18% of Denmark 3110 national demand from wind! Netherlands 912 Italy 904 USA 4685 United Kingdom 649 Canada 322 Austria 415 Sweden 399 Greece 375 Portugal 299 France 239 Ireland 186 Wind Power in Ontario Date in rated Operator Location Service Equipment kW Status 1x Tacke TW-600 CWM Ontario Hydro Tiverton 1995/10 (600 kW) 600 Active O.P.G. Pickering 2001/10 1x Vestas V80 (1,800 kW) 1,800 Active Private Port Albert 2001/12 1x Vestas V47 (660 kW) 660 Active Huron Wind Kincardine 2002/11 5x Vestas V80 9,000 Active Sky Generation Ferndale 2002/11 1x Vestas V80 1,800 Active Source: http://www.canwea.ca/CanadianProduction.html Wind Power in Canada • Canada has decent wind resources • Yet wind industry not as far along here • Why not? – Cheap power • fossil fuels historically subsidized – Limited political support so far – Provincial utilities slow to embrace wind – Hydro & nuclear power well developed • Both avoid air quality & CO2 concerns • This may mean less public pressure for wind – Lenders unfamiliar with wind charge more Phasing Out Coal Smog KILLS thousands in Canada each year http://www.hc-sc.gc.ca/pphb-dgspsp/publicat/rdc-mrc01/pdf/rdc0901e.pdf http://eastern.sierraclub.ca/campaign_coal_fired_power_is_killing_us.shtml http://www.oma.org/phealth/report/airq001.pdf Phasing Out Coal • Smog kills almost 2000 each year • Coal power plants a big problem – More prevalent in U.S.
    [Show full text]
  • Wind Energy and Its Impact on Future Environmental Policy Planning: Powering Renewable Energy in Canada and Abroad
    WIND ENERGY AND ITS IMPACT ON FUTURE ENVIRONMENTAL POLICY PLANNING: POWERING RENEWABLE ENERGY IN CANADA AND ABROAD by Kamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy. Part III discusses the technology behind wind energy generation.
    [Show full text]
  • Renewable Energy Qualifications and Project Experience | Sargent & Lundy
    Renewable Energy Qualifications and Experience Wind Power | Solar PV | Concentrating Solar Power | Alternative Fuels, Recycling, & Biomass | Geothermal | Hydroelectric | Energy Storage | Hybrid Power Plants & Microgrids 55 East Monroe | Chicago, Illinois 60603-5780 | 312.269.2000 | www.sargentlundy.com Renewable Energy Project Experience Qualifications and Experience Contents CONTENTS About Sargent & Lundy .............................................................................................................. 1 Wind Power ................................................................................................................................. 2 Due Diligence and Independent Engineering ............................................................................................ 3 Selected Recent Project Experience ............................................................................................... 3 Additional Project Experience .......................................................................................................... 7 Owner’s Engineer and Technical Advisor ............................................................................................... 15 Selected Recent Project Experience ............................................................................................. 15 Additional Project Experience ........................................................................................................ 16 Conceptual Design and Studies .............................................................................................................
    [Show full text]
  • Nom Du Projet Province Année Puissance Totale (Mégawatts)
    Puissance totale Nom du projet Province Année (mégawatts) Bear Mountain Wind Park BC 2009 102.0 The Eye of the Wind Turbine BC 2010 1.5 Dokie Wind Project BC 2011 144.0 Quality Wind BC 2012 142.2 Cape Scott BC 2013 99.0 Optimist Wind Energy Wind FarmProject AB 1993 0.2 Castle River Wind Farm AB 1997 0.6 Waterton Wind Turbines AB 1998 0.6 Waterton Wind Turbines AB 1998 1.2 Castle River Wind Farm AB 2000 9.9 Waterton Wind Turbines AB 2000 0.7 Castle River Wind Farm AB 2001 29.0 Cowley North AB 2001 19.5 Lundbreck Wind Farm AB 2001 0.6 McBride Lake East AB 2001 0.7 Sinnott Wind Farm AB 2001 6.5 Waterton Wind Turbines AB 2001 0.7 Weather Dancer 1 AB 2001 0.9 Summerview Wind Farm AB 2002 1.8 Waterton Wind Turbines AB 2002 0.7 McBride Lake AB 2003 75.2 Magrath AB 2004 30.0 Summerview Wind Farm AB 2004 68.4 Optimist Wind Energy Wind Farm Project AB 2004 0.8 MacLeod Flats AB 2004 3.0 Chin Chute Wind Farm AB 2006 30.0 Kettles Hill Phase I AB 2006 9.0 Soderglen Wind Farm AB 2006 70.5 Kettles Hill Phase II AB 2007 54.0 Old Man River Project AB 2007 3.6 Taber Wind Farm AB 2007 85.1 Blue Trail AB 2009 66.0 Summerview Wind Farm2 AB 2010 66.0 Ardenville Wind Farm AB 2010 69.0 Ghost Pine Wind Farm AB 2010 81.6 Wintering Hills AB 2011 88.0 Castle Rock Ridge AB 2012 75.9 Halkirk Wind AB 2012 149.4 Blackspring Ridge Wind Project AB 2014 298.8 Box Springs Wind Project AB 2014 6.0 Old Man 2 Wind Farm AB 2014 46.0 Bull Creek Wind Farm AB 2015 29.2 Cypress Wind Power Facility SK 2001 5.9 Sunbridge SK 2001 11.2 Cypress Wind Power Facility SK 2003 4.6 Centennial Wind Power Facility SK 2006 149.4 Red Lily Wind Energy Project SK 2011 26.4 Cowessess First Nation Wind and Storage Demonstration Project SK 2013 0.8 Morse Wind Project SK 2015 23.0 St.
    [Show full text]
  • Guía Para El Desarrollo De Proyectos Comunitarios De Energía Renovable En América Del Norte
    guía Guía para el desarrollo de proyectos comunitarios de energía renovable en América del Norte Comisión para la Cooperación Ambiental El presente documento de antecedentes fue elaborado por ENVINT Consulting y por la Asociación de Energía Sustentable de Ontario (Ontario Sustainable Energy Association, OSEA) para el Secretariado de la Comisión para la Cooperación Ambiental. La información que contiene es responsabilidad de los autores y no necesariamente refleja las opiniones de la CCA o de los gobiernos de Canadá, Estados Unidos o México. Se permite la reproducción total o parcial de este documento, en cualquier forma o medio, con propósitos educativos y sin fines de lucro, sin que sea necesario obtener autorización expresa por parte del Secretariado de la CCA, siempre y cuando se cite debidamente la fuente. La CCA apreciará que se le envíe una copia de toda publicación o material que utilice este trabajo como fuente. Edición al cuidado del Departamento de Comunicación y Difusión del Secretariado de la CCA. Particularidades de la publicación Tipo: documento de referencia Fecha: marzo de 2010 Idioma original: inglés Número de registro AC: 06-08 Procedimientos de revisión y aseguramiento de calidad: Revisión de las Partes: 9 de julio – 6 de agosto de 2007; 21 de diciembre de 2007 – 11 de enero de 2008 © Comisión para la Cooperación Ambiental, 2010 ISBN 978-2-923358-76-5 (versión impresa); ISBN 978-2-923358-77-2 (versión electrónica) Available in English: ISBN 978-2-923358-74-1 (print version); ISBN 978-2-923358-75-8 (electronic version) Depósito legal – Bibliothèque et Archives nationales du Québec, 2010 Depósito legal – Library and Archives Canada, 2010 Impreso en Canadá, en papel Rolland Enviro100 compuesto en su totalidad con fibras recicladas posconsumo, procesadas sin cloro, y fabricado con energía a base de biogás.
    [Show full text]
  • Wind Turbine Public Safety Risk, Direct and Indirect Health Impacts
    Freely Available Online JOURNAL OF ENERGY CONSERVATION ISSN NO: 0000-0000 Research Article DOI : COMING SOON Wind Turbine Public Safety Risk, Direct and Indirect Health Impacts William K.G. Palmer1,* 1Independent Researcher Abstract Wind turbines are often perceived as benign. This can be attributed to the population majority dwelling in urban locations distant from most wind turbines. Society may understate the risk to individuals living near turbines due to an overstatement of the perceived benefits of turbines, and an understatement of the risk of injury from falling turbine parts, or shed ice. Flaws in risk calculation may be attributed to a less than fully developed safety culture. Indications of this are the lack of a comprehensive industry failure database, and safety limits enabling the industry growth, but not protective of the public. A comprehensive study of wind turbine failures and risks in the Canadian province of Ontario gives data to enable validation of existing failure models. Failure probabilities are calculated, to show risk on personal property, or in public spaces. Repeated failures, and inadequate safety separation show public safety is not currently assured. A method of calculating setbacks from wind turbines to mitigate public risk is shown. Wind turbines with inadequate setbacks can adversely impact public health both directly from physical risk and indirectly by irritation from loss of safe use of property. Physical public safety setbacks are separate from larger setbacks required to prevent irritation from noise and other stressors, particularly when applied to areas of learning, rest and recuperation. The insights provided by this paper can assist the industry to enhance its image and improve its operation, as well as helping regulators set safety guidelines assuring protection of the public.
    [Show full text]
  • (Megawatts) Bear Mountain Wind Park BC 2009 102.0 the Eye Of
    Project Name Province Year Total Capacity (Megawatts) Bear Mountain Wind Park BC 2009 102.0 The Eye of the Wind Turbine BC 2010 1.5 Dokie Wind Project BC 2011 144.0 Quality Wind BC 2012 142.20 Cape Scott BC 2013 99.0 Cowley Ridge Wind Farm AB 1993 21.4 Optimist Wind Energy Wind FarmProject AB 1993 0.2 Castle River Wind Farm AB 1997 0.6 Waterton Wind Turbines AB 1998 0.6 Waterton Wind Turbines AB 1998 1.2 Castle River Wind Farm AB 2000 9.9 Waterton Wind Turbines AB 2000 0.7 Castle River Wind Farm AB 2001 29.0 Cowley North AB 2001 19.5 Lundbreck Wind Farm AB 2001 0.6 McBride Lake East AB 2001 0.7 Sinnott Wind Farm AB 2001 6.5 Waterton Wind Turbines AB 2001 0.7 Weather Dancer 1 AB 2001 0.9 Summerview Wind Farm AB 2002 1.8 Waterton Wind Turbines AB 2002 0.7 McBride Lake AB 2003 75.2 Magrath AB 2004 30.0 Summerview Wind Farm AB 2004 68.4 Optimist Wind Energy Wind Farm Project AB 2004 0.8 MacLeod Flats AB 2004 3.0 Chin Chute Wind Farm AB 2006 30.0 Kettles Hill Phase I AB 2006 9.0 Soderglen Wind Farm AB 2006 70.5 Kettles Hill Phase II AB 2007 54.0 Old Man River Project AB 2007 3.6 Taber Wind Farm AB 2007 85.1 Blue Trail AB 2009 66.0 Summerview Wind Farm2 AB 2010 66.0 Ardenville Wind Farm AB 2010 69.0 Ghost Pine Wind Farm AB 2010 81.6 Wintering Hills AB 2011 88.0 Castle Rock Ridge AB 2012 75.9 Halkirk Wind AB 2012 149.4 Blackspring Ridge Wind Project AB 2014 298.8 Box Springs Wind Project AB 2014 6.0 Old Man 2 Wind Farm AB 2014 46.0 Cypress Wind Power Facility SK 2001 5.9 Sunbridge SK 2001 11.2 Cypress Wind Power Facility SK 2003 4.6 Centennial Wind Power Facility SK 2006 149.4 Red Lily Wind Energy Project SK 2011 26.4 Cowessess First Nation Wind and Storage Demonstration Project SK 2013 0.8 Morse Wind Project SK 2015 23.0 St.
    [Show full text]