A REVIEW on the MATERIALS USED DURING the MUMMIFICATION PROCESSES in ANCIENT EGYPT Gomaa Abdel-Maksouda, Abdel-Rahman El-Aminb

Total Page:16

File Type:pdf, Size:1020Kb

A REVIEW on the MATERIALS USED DURING the MUMMIFICATION PROCESSES in ANCIENT EGYPT Gomaa Abdel-Maksouda, Abdel-Rahman El-Aminb Mediterranean Archaeology and Archaeometry, Vol. 11, No. 2, pp. 129-150 Copyright © 2011 MAA Printed in Greece. All rights reserved. A REVIEW ON THE MATERIALS USED DURING THE MUMMIFICATION PROCESSES IN ANCIENT EGYPT Gomaa Abdel-Maksouda, Abdel-Rahman El-Aminb aConservation Department, Faculty of Archaeology, Cairo University, Giza, Egypt bHuman Remains Lab. Conservation Centre, The Grand Egyptian Museum, Ministry of Antiquities affairs, Egypt Received: 13/01/2011 Accepted: 29/05/2011 Corresponding author: [email protected] ABSTRACT Mummification is considered one of the most important in the history of ancient Egyptian civili- zation. The artificial mummification process started in the Fourth Dynasty during the Old Kingdom reached its peak in the New Kingdom. This review focuses on the usage of mummification materi- als such as Natron salt, Coniferous resin, Mastic, Myrrh, Beeswax, Bitumen, Cassia, Onions, Lichen, Henna and Gum Arabic in ancient Egypt to determine their effectiveness in the preservation of the body. For each material, the chemical formula, the history, and the role in the preservation of the body are presented. It is shown that natron salt was the most important material to desiccate a corpse, and that the vegetable materials mentioned above have anti-bacterial properties that pro- tected the body from microbial attack. KEYWORDS: Mummification, Natron salt, vegetable materials, beeswax, bitumen, lichen 130 ABDEL-MAKSOUD & EL-AMIN 1. INTRODUCTION fied stomach and intestines were drained out with the oil (Hamilton-Paterson & Andrews, Ancient Egyptian civilization was distin- 1978; Abdel-Maksoud, 2001). In the third and guished by a clearly defined belief in a human cheapest method, the body was purged so that existence which continued after death, but this the intestines came away, and the body was individual immortality was considered to be then treated with natron (David, 2001). dependent in part on the preservation of the It can be said that most authors have agreed body in as lifelike a form as possible (David, on the description of three methods of mummi- 1990). Their religious concepts concerning the fication, but they differed among themselves in afterlife made it necessary to preserve the body the description of the mummification materials. as a place for the `soul' to return to (Jansen et Some authors described the mummification ma- al., 2002). This belief came from observations terials depending on the description of old ref- that the dry sand of the desert acted to preserve erences and this may be due to the lack of anal- buried bodies. Such beliefs were extant as early ysis tools. All these references were in the first as the Neolithic and Predynastic periods of half of the twentieth century. Other authors de- 5000–4000 B.C. scribed these materials depending on the analy- An example of the importance of the preser- sis and investigation. Most analysis has oc- vation of the body is seen in the invocation curred from the end of the twentieth century to from the ancient Egyptian mortuary texts re- present day. Since the end of the twentieth cen- ferred to as the “Book of the Dead”: ‘My body is tury, archaeologists have long found them- everlasting, it will not perish and it will not de- selves faced with the difficult problem of identi- cay for ages’ (Kłys et al., 1999). Even though fying unknown materials used with mummies. mummification was practiced in Egypt for near- Most analyses were done on resinous materials. ly 3500 years, from the Old Kingdom, ca. 2600 This may be due to: (1) most authors have ana- BC to the Christian Period, an end was put to lyzed wrapped mummies; (2) most resinous this practice only after the Arab conquest of materials have been used on the bandages; (3) Egypt in the 7th century AD (Maurer et al., from a conservation point of view, it was diffi- 2002). cult to remove bandages of mummies (to look According to the Greek historian Herodotus, for other mummification materials) because this three main types of mummification were avail- will lead to the deterioration of mummies. In able, and the client chose the method he could this study, some materials of mummification afford (David, 2001). The most important ele- were identified through analyses and investiga- ments of mummification, which were crucial to tions and other materials were written through arresting the decomposition of the body were literatures. evisceration and dehydration of the tissues. In recent years, Egyptian mummies have Some authors (Smith & Dawson, 1924; Lauer & been the subject of a fairly large number of sci- Iskender, 1955; Leek, 1969; Iskander & Shahin, entific studies (Maurer et al., 2002), but at the 1973; Hamilton-Paterson & Andrews, 1978; Is- same time have always been a matter of contro- kander, 1980; D’Auria, 1988; Taylor, 1995; Ikram versy. The analyses were based on high per- and Dodson, 1998; Aufderheide, 2003; Salter- formance liquid chromatography (HPLC) and Pedersen, 2004; Taconis, 2005; Sivrev et al., gas chromatography-mass spectrometry (GC- 2005; Dunand & Lichterberg, 2006) have written MS). However, most of these methods are di- on the ideal technique and most expensive rected to the identification of a few of the sub- method of mummification, which involved stances that are simultaneously present in the many stages. sample, and thus only partial information can In the second method, oil of cedar was in- be obtained (Colombini et al., 2000). Gas chro- jected into the anus, which was plugged to pre- matography-mass spectrometry (GC/MS) and vent the escape of the liquid, and the body was other analysis studies allowed the elucidation then treated with natron. Once this was com- of a great number of clearly separated com- plete, the anal plug was removed and the lique- pounds found in ancient embalming materials. REVIEW ON MUMMIFICATION MATERIALS IN ANCIENT EGYPT 131 Phenols, guaiacols, naphthalenes, monoter- ping of the body and the third method was the penes, sesquiterpenoids, oxidised diterpene res- cheapest of all (Iskander, 1980). in acids and triterpenoids were identified; The first method of mummification can be through these intergradients, the materials used summarized as follows: in mummification could be determined. These 1- The body was stripped of its garments, compounds also have antibacterial and antifun- laid out on the embalming couch and purified. gal effects and also prevent against deteriora- This was performed in a temporary structure tion caused by insects. Meanwhile analytical close to the Nile or a canal (Taconis, 2005). investigations have revealed a reasonably clear 2- An incision was then made in the left side picture of the process of mummification and the of the abdomen with a knife of obsidian or oth- materials used (Maurer et al., 2002). er kind of stone (Lauer & Iskender, 1955; Is- This study aims to focus on the mummifica- kander & Shahin, 1973). Once the embalmers tion types and to discuss the materials used in inserted their hand through the incision and the mummification processes (history, chemical removed the liver, stomach and intestines, they composition, and their effectiveness in the cut the diaphragm and pulled out the lungs preservation of the body). (Ikram and Dodson, 1998). The heart wasn't removed as the heart was believed to be 2. TYPES OF MUMMIFICATION weighed in the afterlife to determine the good- ness of the individual (Iskander, 1980). It is Naturally or artificially preserved bodies, in thought that the kidneys were also left in the which desiccation (drying, dehydration) of the body. The liver, stomach, intestines and lungs tissues has prevented putrefaction, have been were washed and rinsed out with spices and discovered in Egypt (David, 2001). Most proba- palm wine (Sivrev et al., 2005). The spices were bly, the natural preservation of the body was probably used as a deodorant (Hamilton- noticed by the proto-dynastic people, perhaps Paterson & Andrews, 1978), and a sterilizing when they were burying a new corpse in the material (Iskander, A.E, Shahin, 1973; Taconis, sand near a previously buried one and it might 2005). Each of these organs was then individu- have inspired them to believe that the body ally dried, wrapped in linen and placed in a could be preserved and could more or less re- canopic jar. Each jar held a different organ and tain its human likeness (Iskander, 1980). True in later periods, the jar lids were shaped to rep- mummification (artificial methods) can be iden- resent one of the four sons of Horus (Aufder- tified as a method, which incorporates several heide, 2003). sophisticated techniques, making use of chemi- 3- The brain was not believed to have any cal and other agents. Many years of experimen- importance, so it was cut into small pieces to tation would be required to perfect such meth- facilitate removal and discarded (D’Auria, ods. The artificial preservation of the corpse 1988). An examination of ancient Egyptian was practiced in Egypt from the Old Kingdom skulls in the Macalister Collection at Cambridge to the Christian era (David, 1990). According to showed that 56 percent had a hole made in the Herodotus account, there were a set of men base of the skull through the plate of the eth- who practiced the true mummification method moid bone. In 5 percent it had been made and made it their business. When a body was through the left nostril, and in 3 percent brought to them, the embalmers showed the through the right one. In others the nasal sep- family of the deceased wooden models of tum had been wholly or partially removed, corpses, so that they could choose the level of which resulted in significant perforation to the mummification they wanted. The mummifica- base of the skull (Leek, 1969). Brain removal tion techniques were classified into three types.
Recommended publications
  • The Maiwa Guide to NATURAL DYES W H at T H Ey a R E a N D H Ow to U S E T H E M
    the maiwa guide to NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM WA L NUT NATURA L I ND IG O MADDER TARA SYM PL O C OS SUMA C SE Q UO I A MAR IG O L D SA FFL OWER B U CK THORN LIVI N G B L UE MYRO B A L AN K AMA L A L A C I ND IG O HENNA H I MA L AYAN RHU B AR B G A LL NUT WE L D P OME G RANATE L O G WOOD EASTERN B RA ZIL WOOD C UT C H C HAMOM IL E ( SA PP ANWOOD ) A LK ANET ON I ON S KI NS OSA G E C HESTNUT C O C H I NEA L Q UE B RA C HO EU P ATOR I UM $1.00 603216 NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM Artisans have added colour to cloth for thousands of years. It is only recently (the first artificial dye was invented in 1857) that the textile industry has turned to synthetic dyes. Today, many craftspeople are rediscovering the joy of achieving colour through the use of renewable, non-toxic, natural sources. Natural dyes are inviting and satisfying to use. Most are familiar substances that will spark creative ideas and widen your view of the world. Try experimenting. Colour can be coaxed from many different sources. Once the cloth or fibre is prepared for dyeing it will soak up the colour, yielding a range of results from deep jew- el-like tones to dusky heathers and pastels.
    [Show full text]
  • Juniperus Communis L.) Essential Oil
    Antioxidants 2014, 3, 81-98; doi:10.3390/antiox3010081 OPEN ACCESS antioxidants ISSN 2076-3921 www.mdpi.com/journal/antioxidants Article Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism Martina Höferl 1,*, Ivanka Stoilova 2, Erich Schmidt 1, Jürgen Wanner 3, Leopold Jirovetz 1, Dora Trifonova 2, Lutsian Krastev 4 and Albert Krastanov 2 1 Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna 1090, Austria; E-Mails: [email protected] (E.S.); [email protected] (L.J.) 2 Department Biotechnology, University of Food Technologies, Plovdiv 4002, Bulgaria; E-Mails: [email protected] (I.S.); [email protected] (D.T.); [email protected] (A.K.) 3 Kurt Kitzing Co., Wallerstein 86757, Germany; E-Mail: [email protected] 4 University Laboratory for Food Analyses, University of Food Technologies, Plovdiv 4002, Bulgaria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-1-4277-55555; Fax: +43-1-4277-855555. Received: 11 December 2013; in revised form: 26 January 2014 / Accepted: 28 January 2014 / Published: 24 February 2014 Abstract: The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%).
    [Show full text]
  • DN Product Instructions
    discovery naturals™ READ CAREFULLY BEFORE USE Our products work on ALL HAIR TYPES (African, Asian, Caucasian, Indian, and Latino, chemically colored, bleached, straightened or damaged hair). Hair colors are permanent and normally last 4 - 8 weeks. Our products cannot lighten dark hair. Use as often as desired because the more you use them, the better your results. Below are detailed directions, but you may need to alter the process a bit to achieve your ideal results. Once you find your perfect application technique it will work every time. Remember, your hair, scalp, skin, and health are worth it, plus you'll look great naturally! Sensitivity Test: Sensitivity to our natural plant products is extremely rare. First time users of hair or tattoo products should perform a skin sensitivity test before full application. If any sensitivity occurs it is due to a reaction to one of the natural plants in our formula, or your skin has not healed completely from prior chemical product usage and you’ll need to wait until your skin is fully healed before retrying. Our products DO NOT contain PPD (Para-Phenylenediamine), Amonia, Peroxide, Bleach, Lye, or other nasty chemicals found in traditional hair colors. To perform a sensitivity test, mix a ¼ teaspoon of powder with a few drops of water to form a thick paste. Apply dime sized amount of paste to the inside of the wrist and/or near the hairline. Wrap with plastic wrap to keep moist for 1.5 – 3 hours. Rinse paste off with water. After 24 hours evaluate for sensitivity or redness.
    [Show full text]
  • A Broad Spectrum Activity of Abhal (Juniperus Communis) with Special Reference to Unani System of Medicine
    © 2021 JETIR March 2021, Volume 8, Issue 3 www.jetir.org (ISSN-2349-5162) A Broad Spectrum Activity of Abhal (Juniperus communis) with Special Reference to Unani System of Medicine. A Review * Dr. Aafiya Nargis 1, Dr. Ansari Bilquees Mohammad Yunus 2, Dr. Sharique Zohaib 3, Dr. Qutbuddin Shaikh 4, Dr. Naeem Ahmed Shaikh 5 *1 Associate Professor (HOD) Dept. of Niswan wa Qabalat, Mohammadia Tibbia College, Mansoora, Malegaon 2 Associate professor, Dept. Tashreeh ul Badan, Mohammadia Tibbia College, Mansoora, Malegaon. 3 Associate Professor (HOD) Dept. of Saidla, Mohammadia Tibbia College, Manssoora, Malegaon 4 Professor (HOD), Dept. of Tahaffuzi wa Samaji Tibb, Markaz Unani Medical College and Hospital. Kozhikode. 5 Professor (HOD), Dept. of Ain, Uzn, Anf, Halaq wa Asnan, Markaz Unani Medical College and Hospital. Kozhikode. Abstract:- Juniperus communis is a shrub or small evergreen tree, native to Europe, South Asia, and North America, and belongs to family Cupressaceae. It has been widely used as herbal medicine from ancient time. Traditionally the plant is being potentially used as antidiarrhoeal, anti-inflammatory, astringent, and antiseptic and in the treatment of various abdominal disorders. The main chemical constituents, which were reported in J. communis L. are 훼-pinene, 훽-pinene, apigenin, sabinene, 훽-sitosterol, campesterol, limonene, cupressuflavone, and many others Juniperus communis L. (Abhal) is an evergreen aromatic shrub with high therapeutic potential in human diseases. This plant is loaded with nutrition and is rich in aromatic oils and their concentration differ in different parts of the plant (berries, leaves, aerial parts, and root). The fruit berries contain essential oil, invert sugars, resin, catechin , organic acid, terpenic acids, leucoanthocyanidin besides bitter compound (Juniperine), flavonoids, tannins, gums, lignins, wax, etc.
    [Show full text]
  • Gymnosperms) of New York State
    QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D.
    [Show full text]
  • Gum Arabic: More Than an Edible Emulsifier
    1 Gum Arabic: More Than an Edible Emulsifier Mariana A. Montenegro1, María L. Boiero1, Lorena Valle2 and Claudio D. Borsarelli2 1Departamento de Química, Universidad Tecnológica Nacional- Facultad Regional Villa María, Córdoba 2Laboratorio de Cinética y Fotoquímica, Instituto de Química del Noroeste Argentino (INQUINOA-CONICET) Universidad Nacional de Santiago del Estero, Santiago del Estero Argentina 1. Introduction Gum Arabic (GA) or Acacia gum is an edible biopolymer obtained as exudates of mature trees of Acacia senegal and Acacia seyal which grow principally in the African region of Sahe in Sudan. The exudate is a non-viscous liquid, rich in soluble fibers, and its emanation from the stems and branches usually occurs under stress conditions such as drought, poor soil fertility, and injury (Williams & Phillips, 2000). The use of GA dates back to the second millennium BC when the Egyptians used it as an adhesive and ink. Throughout the time, GA found its way to Europe and it started to be called "gum arabic" because was exported from Arabian ports. Chemically, GA is a complex mixture of macromolecules of different size and composition (mainly carbohydrates and proteins). Today, the properties and features of GA have been widely explored and developed and it is being used in a wide range of industrial sectors such as textiles, ceramics, lithography, cosmetics and pharmaceuticals, encapsulation, food, etc. Regarding food industry, it is used as a stabilizer, a thickener and/or an emulsifier agent (e.g., soft drink syrup, gummy candies and creams) (Verbeken et al., 2003). In the pharmaceutical industry, GA is used in pharmaceutical preparations and as a carrier of drugs since it is considered a physiologically harmless substance.
    [Show full text]
  • (Acacia Senegal, (L.) Willd) Plantation on Yield of Some Traditional Field Crops in Southern Darfur
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace The Effect of Spacing of Hashab (Acacia senegal, (L.) Willd) Plantation on Yield of some Traditional Field Crops in Southern Darfur. BY Mustafa Abdalla Nasreldin B.Sc. (Agriculture), University of Zagazig (Egypt), 1990 M.Sc. Forestry, University of Khartoum, 1996 A Thesis Submitted to University of Khartoum in Fulfillment of the Requirements for Ph. D. (Forestry) Agroforestry. Supervisor Professor Dr. Salah Eldin Goda Hussein Department of Silviculture Faculty of Forestry University of Khartoum December 2004 i Dedication To the soul of my father. To my mother and to my family. With deep love and respect, for their patience and encouragement. ii Acknowledgement I wish to express my sincere thanks and gratitude to Professor Dr. Salah Eldin Goda Hussein for his close and helpful supervision. My thanks also due to the Director of Forestry Research Center (ARC) Prof. Ahmed Ali Salih and to the Co-ordinator of Gum Arabic Research Dr. Mohammed Mukhtar Balal for their financial support to accomplish the fieldwork of this research. My special thanks are due to my colleagues and the staff of Nyala Research Station for their help particularly Mohamed Salah Eldin Mohmamed for his help in introducing the digital pictures in the computer and editing the figures and Amna Ibrahim Elzein for typing assistance . I am really indebted to the Agricultural Research Corporation (ARC) and to The National Training Administration on behalf of the government of the Sudan who offered me the opportunity of the study. And finally, my thanks and prayers to Allah for completion of this study.
    [Show full text]
  • Tips for Cooking with Juniper Hunt Country Marinade
    Recipes Tips for Cooking with Juniper • Juniper berries can be used fresh and are commonly sold dried as well. • Add juniper berries to brines and dry rubs for turkey, pork, beef, and wild game. • Berries are typically crushed before added to marinades and sauces. Hunt Country Marinade ¾ cup Cabernet Sauvignon or other dry red wine 3 large garlic cloves, minced ¼ cup balsamic vinegar 3 2x1-inch strips orange peel (orange part only) 3 tablespoons olive oil 3 2x1-inch strips lemon peel (yellow part only) 2 tablespoons unsulfured (light) molasses 8 whole cloves 2 tablespoons chopped fresh thyme or 2 8 whole black peppercorns teaspoons dried 2 bay leaves, broken in half 2 tablespoons chopped fresh rosemary or 2 ¾ teaspoon sa teaspoons dried 1 tablespoon crushed juniper berries or 2 tablespoons gin Mix all ingredients in a medium bowl. (Can be made 2 days ahead. Cover; chill.) Marinate poultry 2 to 4 hours and meat 6 to 12 hours in refrigerator. Drain marinade into saucepan. Boil 1 minute. Pat meat or poultry dry. Grill, basting occasionally with marinade. — Bon Appetit July 1995 via epicurious.com ©2016 by The Herb Society of America www.herbsociety.org 440-256-0514 9019 Kirtland Chardon Road, Kirtland, OH 44094 Recipes Pecan-Crusted Beef Tenderloin with Juniper Jus Two 2 ½ - pound well-trimmed center-cut 1 cup pecans, very finely chopped beef tenderloins, not tied 3 shallots, thinly sliced Salt and freshly ground pepper 1 carrot, thinly sliced 4 tablespoons unsalted butter 1 tablespoon tomato paste 2 tablespoons extra-virgin olive oil 2 teaspoons dried juniper berries, crushed ¼ cup ketchup 1 ½ cups full-bodied red wine, such as Syrah ¼ cup Dijon mustard 1 cup beef demiglace (see Note) 4 large egg yolks Preheat the oven to 425°F.
    [Show full text]
  • Factors Affecting the Quality of Acacia Senegal Gums
    Factors affecting the quality of Acacia senegal gums Item Type Thesis or dissertation Authors Hamouda, Yasir Citation Hamouda, Y. (2017). Factors affecting the quality of Acacia senegal gums. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Download date 04/10/2021 01:43:40 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/620895 Factors affecting the quality of Acacia senegal gums Thesis submitted in accordance with the requirements of the University of Chester for the degree of Doctor of Philosophy by Yasir Hamouda April 2017 DECLARATION The material being presented for examination is my own work and has not been submitted for an award of this or another HEI except in minor particulars which are explicitly noted in the body of the thesis. Where research pertaining to the thesis was undertaken collaboratively, the nature and extent of my individual contribution has been made explicit. Signed …………………………………………………(Candidate) Date……………………………………………………… ii Acknowledgements I would like to thank the following ñ Prof. S. Al-Assaf for supervision, advice, help and encouragement. ñ Prof. G. O. Phillips for his support and help. ñ The members of Glyn O. Phillips Hydrocolloids Research Centre in Glyndwr University. ñ The members of Glyndwr University. ñ The members of University of Chester. ñ The members of Sudanese National Forestry Corporation. ñ My family for their encouragement and support. iii Abstract Gum arabic is a natural gummy exudate from acacia trees and exhibits natural built-in variations commonly associated with hydrocolloids. This study is concerned with the determination of factors which could influence its properties and functionality.
    [Show full text]
  • Henna Powder, Cones, Pastes & Hollywood
    HENNA POWDER, CONES, PASTES & HOLLYWOOD INK Please read the following instructions completely before use Sensitivity Test: Sensitivity to this product is extremely rare. First time users should do a spot sensitivity test. For Henna Powder mix a small amount of powder into a paste with water and apply it to the inner wrist and/or near the hairline on the back of the neck. For Cones, Pastes and Hollywood Ink, no mixing is needed. After 2 hours, rinse with warm water. Wait and evaluate for sensitivity or redness after 24 hours. If sensitivity develops, do not use this product. Organic Aloe Vera gel and/or Organic Coconut Oil applied to the skin and scalp may help calm any sensitivity reactions. Henna Powder for Tattoos Prep: Henna Powder 2-4 Tea Bags Bottled or fresh lemon juice (strained) Large plastic or glass bowl for mixing Measuring spoon/measuring cup Sugar or honey (optional) Essential Oils (optional) Large plastic bag or plastic bottle for storage Applicator bottle or cone for applying the henna Saran wrap Paper towels for cleanup Mix: For tattoos, place entire package of henna powder in a glass or ceramic bowl. Boil 2-3 cups of water, then add 2- 4 tea bags, and let steep for 30 minutes or longer. You want the darkest brew possible. Add 2- 4 tablespoons of fresh lemon juice to the powder. While stirring, add the warm tea brew in a little at a time. Mix well and use enough brew so that the mixture is the same consistency as pancake batter. Add 2 teaspoons of an essential oil, and mix well.
    [Show full text]
  • Milling of Spices with NETZSCH Impact Mills Condux
    Sesame seeds Chili Black onion seeds Curcuma Sichuan pepper Brown cardamom Cassia sticks Nutmeg Cloves Star anise Ginger Liquorice Srilanka cinnamon sticks Vanila Black pepper powder Safran Jamaica pepper Juniper berry Black pepper grain White pepper grain Milling of Spices with NETZSCH Fine Impact Mill CONDUX® a Business Field of FOOD & CONFECTIONERY NETZSCH Grinding & Dispersing Milling of Spices with Fine Impact Mill CONDUX® Processing and refi ning are the actual tasks of the spice industry – a product which is “suitable for consumption” must be manufac- tured from the raw spices. One of the main tasks is the grinding of the raw materials. As the fl avouring components – mainly essential oils – are very volatile, a particularly gentle grinding procedure must be used. This task can be carried out easily using the NETZSCH Fine Impact Mill CONDUX®. Combine your excellent spices with our high quality machines and your success will be inevitable! NETZSCH Fine Impact Mill CONDUX® 680 Processing Spices Spices enrich our life with taste. It is a long way Your Advantages at a Glance from the seed to the ready packed powder in our kitchen. To preserve a maximum of taste a Impact mill for various types of lot of processes must be considered. ∙ spices Various grinding tools One key process in this procedure is the ∙ High fineness particle size reduction. A low particle size ∙ Low temperatures distribution means great taste and beautiful ∙ Sturdy design color. However, if the temperature increase ∙ Easy to clean during processing is too great, the taste and ∙ color of the spice su er. Especially for such sensitive products we have developed some special machines, which enable high grinding e ciency combined with a very low temperature increase.
    [Show full text]
  • Gum Arabic: a Case Study of Nigeria
    United Nations Conference on Trade and Development ROUND TABLE: THE ECONOMICS OF GUM ARABIC IN AFRICA 27 April 2018, Geneva The economic, social and environmental relevance of gum arabic with a focus on the major challenges and opportunities for producing countries of Africa: A case study of Nigeria By Tunde Mustapha Minister, Permanent Mission of the Federal Republic of Nigeria to the United Nations Office and other international organizations in Geneva The views expressed are those of the author and do not necessarily reflect the views of UNCTAD. THE ECONOMIC, SOCIAL AND ENVIRONMENTAL RELEVANCE OF GUM ARABIC WITH A FOCUS ON THE MAJOR CHALLENGES AND OPPORTUNITIES FOR PRODUCING COUNTRIES OF AFRICA: A CASE STUDY OF NIGERIA. 2 • Land area: 923 Million square NIGERIA IN km. CONTEXT • Population: 190 million, 2.5% annual growth • Economy: GDP of about $500b, Largest economy in Africa • GDP per Capital: $2,376 • Main Resources: Oil, Gas, Cocoa, Rubber etc. 3 GUM ARABIC • Gum Arabic “desert gold of Africa” is the dried exudates obtained from stems and branches of Acacia senegal (L.) Willd or closely related species of Acacia that belong to the family Fabaceae. • The species adapted naturally to the hot, dry and barren regions of Africa particularly in areas along the southern frontiers of Sahara desert including Mauritania, Senegal, Mali, Niger, Nigeria, Chad and Sudan 4 STATUS❖In Nigeria OF estimated GUM ARABIC hectarage PRODUCTIONof gum Arabic IN both NIGERIA cultivated and the wild form (forest reserves) is put at 2.5 million (ha)while the cultivated type comprising of government and private holdings sum up to 12,050.4ha ❖In most states Acacia Senegal occurs along side other gum producing Acacias such as A seyal, ❖ This biodiversity is reminiscent of centres of origin which often constitute centres of biodiversities.
    [Show full text]