Physical Effects of Habitat‐Forming Species Override Latitudinal Trends in Temperature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alexander the Great's Tombolos at Tyre and Alexandria, Eastern Mediterranean ⁎ N
Available online at www.sciencedirect.com Geomorphology 100 (2008) 377–400 www.elsevier.com/locate/geomorph Alexander the Great's tombolos at Tyre and Alexandria, eastern Mediterranean ⁎ N. Marriner a, , J.P. Goiran b, C. Morhange a a CNRS CEREGE UMR 6635, Université Aix-Marseille, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 04, France b CNRS MOM Archéorient UMR 5133, 5/7 rue Raulin, 69365 Lyon cedex 07, France Received 25 July 2007; received in revised form 10 January 2008; accepted 11 January 2008 Available online 2 February 2008 Abstract Tyre and Alexandria's coastlines are today characterised by wave-dominated tombolos, peculiar sand isthmuses that link former islands to the adjacent continent. Paradoxically, despite a long history of inquiry into spit and barrier formation, understanding of the dynamics and sedimentary history of tombolos over the Holocene timescale is poor. At Tyre and Alexandria we demonstrate that these rare coastal features are the heritage of a long history of natural morphodynamic forcing and human impacts. In 332 BC, following a protracted seven-month siege of the city, Alexander the Great's engineers cleverly exploited a shallow sublittoral sand bank to seize the island fortress; Tyre's causeway served as a prototype for Alexandria's Heptastadium built a few months later. We report stratigraphic and geomorphological data from the two sand spits, proposing a chronostratigraphic model of tombolo evolution. © 2008 Elsevier B.V. All rights reserved. Keywords: Tombolo; Spit; Tyre; Alexandria; Mediterranean; Holocene 1. Introduction Courtaud, 2000; Browder and McNinch, 2006); (2) establishing a typology of shoreline salients and tombolos (Zenkovich, 1967; The term tombolo is used to define a spit of sand or shingle Sanderson and Eliot, 1996); and (3) modelling the geometrical linking an island to the adjacent coast. -
The Malay Archipelago
BOOKS & ARTS COMMENT The Malay Archipelago: the land of the orang-utan, and the bird of paradise; a IN RETROSPECT narrative of travel, with studies of man and nature ALFRED RUSSEL WALLACE The Malay Macmillan/Harper Brothers: first published 1869. lfred Russel Wallace was arguably the greatest field biologist of the nine- Archipelago teenth century. He played a leading Apart in the founding of both evolutionary theory and biogeography (see page 162). David Quammen re-enters the ‘Milky Way of He was also, at times, a fine writer. The best land masses’ evoked by Alfred Russel Wallace’s of his literary side is on show in his 1869 classic, The Malay Archipelago, a wondrous masterpiece of biogeography. book of travel and adventure that wears its deeper significance lightly. The Malay Archipelago is the vast chain of islands stretching eastward from Sumatra for more than 6,000 kilometres. Most of it now falls within the sovereignties of Malaysia and Indonesia. In Wallace’s time, it was a world apart, a great Milky Way of land masses and seas and straits, little explored by Europeans, sparsely populated by peoples of diverse cul- tures, and harbouring countless species of unknown plant and animal in dense tropical forests. Some parts, such as the Aru group “Wallace paid of islands, just off the his expenses coast of New Guinea, by selling ERNST MAYR LIB., MUS. COMPARATIVE ZOOLOGY, HARVARD UNIV. HARVARD ZOOLOGY, LIB., MUS. COMPARATIVE MAYR ERNST were almost legend- specimens. So ary for their remote- he collected ness and biological series, not just riches. Wallace’s jour- samples.” neys throughout this region, sometimes by mail packet ship, some- times in a trading vessel or a small outrigger canoe, were driven by a purpose: to collect animal specimens that might help to answer a scientific question. -
Geographic Names
GEOGRAPHIC NAMES CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES ? REVISED TO JANUARY, 1911 WASHINGTON GOVERNMENT PRINTING OFFICE 1911 PREPARED FOR USE IN THE GOVERNMENT PRINTING OFFICE BY THE UNITED STATES GEOGRAPHIC BOARD WASHINGTON, D. C, JANUARY, 1911 ) CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES. The following list of geographic names includes all decisions on spelling rendered by the United States Geographic Board to and including December 7, 1910. Adopted forms are shown by bold-face type, rejected forms by italic, and revisions of previous decisions by an asterisk (*). Aalplaus ; see Alplaus. Acoma; township, McLeod County, Minn. Abagadasset; point, Kennebec River, Saga- (Not Aconia.) dahoc County, Me. (Not Abagadusset. AQores ; see Azores. Abatan; river, southwest part of Bohol, Acquasco; see Aquaseo. discharging into Maribojoc Bay. (Not Acquia; see Aquia. Abalan nor Abalon.) Acworth; railroad station and town, Cobb Aberjona; river, IVIiddlesex County, Mass. County, Ga. (Not Ackworth.) (Not Abbajona.) Adam; island, Chesapeake Bay, Dorchester Abino; point, in Canada, near east end of County, Md. (Not Adam's nor Adams.) Lake Erie. (Not Abineau nor Albino.) Adams; creek, Chatham County, Ga. (Not Aboite; railroad station, Allen County, Adams's.) Ind. (Not Aboit.) Adams; township. Warren County, Ind. AJjoo-shehr ; see Bushire. (Not J. Q. Adams.) Abookeer; AhouJcir; see Abukir. Adam's Creek; see Cunningham. Ahou Hamad; see Abu Hamed. Adams Fall; ledge in New Haven Harbor, Fall.) Abram ; creek in Grant and Mineral Coun- Conn. (Not Adam's ties, W. Va. (Not Abraham.) Adel; see Somali. Abram; see Shimmo. Adelina; town, Calvert County, Md. (Not Abruad ; see Riad. Adalina.) Absaroka; range of mountains in and near Aderhold; ferry over Chattahoochee River, Yellowstone National Park. -
Drowned Stone Age Settlement of the Bay of Firth, Orkney, Scotland
Drowned Stone Age The Neolithic sites of Orkney settlement of the Bay of are about 5000 years old. They include villages such as Skara Firth, Orkney, Scotland Brae where stone-built furniture may still be seen. CR Wickham-Jones1 S. Dawson2& R Bates3 Report produced in compliance with the requirements of the NGS/Waitt Grant for award no W49-09 Introduction This paper presents the results of geophysical survey and diving work in Skara Brae: Raymond Parks the Bay of Firth, Orkney supported by the NGS/Waitt Grant. This work Tombs such as Maeshowe took place in 2009 with the aim of recording and verifying possible were built for the occupants of the Neolithic villages submerged prehistoric stone structures on the sea bed. The archipelago of Orkney comprises a small Location of area of interest in Bay of Firth, Orkney group of low-lying islands Maeshowe: Sigurd Towrie seven miles to the north of Great stone circles were built in mainland Scotland. It is order to mark the passing of the year and celebrate well known for its festivities archaeology which includes the stone built houses, tombs and monuments that make up the Heart of Neolithic Orkney World Heritage Sites. The archaeology of Orkney is unique both in terms of the range of monuments that have Stones of Stenness: Raymond survived and in terms of the diversity of artefactual material that has been Parks uncovered. 1 University of Aberdeen, [email protected] 2 University of Dundee, [email protected] 3 University of St Andrews, [email protected] 1 Sediment cores may be extracted by hand as here in the Loch of Stenness There is another, less well known, side to Orkney archaeology, however, and that comprises the submerged landscape around the islands. -
Experimental Investigation of Tidal and Freshwater Influence on Symbiodiniummuscatinei Abundance in Its Host, Anthopleura Elegantissima
EXPERIMENTAL INVESTIGATION OF TIDAL AND FRESHWATER INFLUENCE ON SYMBIODINIUMMUSCATINEI ABUNDANCE IN ITS HOST, ANTHOPLEURA ELEGANTISSIMA A Thesis submitted to the faculty of San Francisco State University Z o lQ In partial fulfillment of the requirements for H A t X the Degree Master of Science In Marine Science by Daniel John Hossfeld San Francisco, California May 2019 Copyright by Daniel John Hossfeld 2019 CERTIFICATION OF APPROVAL I certify that I have read Experimental investigation of tidal and freshwater influence on Symbiodinium muscatinei abundance in its host, Anthopleura elegantissima by Daniel John Hossfeld, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Marine Science at San Francisco State University. Sarah Cohen, Ph.D. Professor Lorraine Ling, Ph.D. Postdoc Researcher at Stanford University EXPERIMENTAL INVESTIGATION OF TIDAL AND FRESHWATER INFLUENCE ON SYMBIODINIUMMUSCAT1NEI ABUNDANCE IN ITS HOST, ANTHOPLEURA ELEGANTISSIMA Daniel John Hossfeld San Francisco, California 2019 Controlled experiments testing effects of temperature, salinity, and aerial exposure were paired with field observations to investigate symbiont expulsion in the abundant intertidal anemone, Anthopleura elegantissima. In the study region, A. elegantissima hosts a single symbiont, the dinoflagellate Symbiodinium muscatinei. The San Francisco Bay outflow creates a tidally influenced low-salinity plume that impacts adjacent coastal sites. Salinity, temperature, and aerial stress induce a bleaching response similar to corals where symbionts are expelled, causing further energetic stress. Using field observations of environmental conditions and symbiont abundance at sites on a gradient of exposure to estuarine outflow, along with fully crossed multifactorial lab experiments, we tested for changes in symbiont abundance in response to various combinations of three stressors. -
Sanitary Survey Report Production Area: Point of Hamna Ayre & Muckle Roe
Scottish Sanitary Survey Programme Sanitary Survey Report Production Area: Point of Hamna Ayre & Muckle Roe SIN : SI 374 763 08 & SI 221 433 08 Date Report Distribution – Point of Hamna Ayre & Muckle Roe Date Name Agency Linda Galbraith Scottish Government Mike Watson Scottish Government Morag MacKenzie SEPA Douglas Sinclair SEPA Fiona Garner Scottish Water Alex Adrian Crown Estate Dawn Manson Shetland Island Council Sean Williamson NAFC Scalloway Jim Georgeson Harvester Point of Hamna Ayre & Muckle Roe Sanitary Survey Report V1.0 i Table of Contents I. Executive Summary .................................................................................. 1 II. Sampling Plan ........................................................................................... 3 III. Report ................................................................................................... 4 1. General Description .................................................................................. 4 2. Fishery ...................................................................................................... 5 3. Human Population .................................................................................... 7 4. Sewage Discharges .................................................................................. 8 5. Geology and Soils ................................................................................... 10 6. Land Cover ............................................................................................. 11 7. Farm Animals -
Proceedings of the United States National Museum
1885.] PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 361 Cambarus sp. 48G7. Cheatham's Ferry, Lauderdale Coimty, Ahi. 40. Cambarus nisticus Gir. 4908. Ciuciuuati, Ohio. Ouo of Hagen'a types. Mua. Couip. Zoul. 1^. 4060. Lebanon, Teuu. Typo of C. jj ?acid«s Ha^. Mus. Comp. Zool. 1^. 9427. White River, Eureka Springs, Ark. Jordan & Gilbert. 1 $ . 4967. Kentucky River, Little Hickman, Ky. Type of C. juvenilis Hag. Mus. Comp. Zool. 1 <? . 41. Cambarus spinosus Bundy. 4881. Cypress Creek, Lauderdale County, Ala. C. L. Herrick. Cambarus sp. 4884. Georgia. 42. Cambarus Putnami Fax. 10130. Grayson Springs, Grayson County, Ky. Type. Mus. Comp. Zool. 43. Cambarus forceps Fax. 4880. Cypress Creek, Lauderdale County, Ala. C. L. Herrick, October, 1882. Types. 44. Cambarus Montezumae Sans. 4119. Lake San Roque, Trapuato, Mexico. 4864. Mexico. 45. Cambarus Shufeldtii Fax. 4860. Near Ne^ Orleans, La. Dr. R. W. Shufeldt, 1883. Types. 46. Cheraps Preissii Erichs. ? 4889. Sydney, Australia. 47. Parastacinee, sp. uov. 4133. Colima, Mexico. J. Xantus. A LIST OP THE FISHES KNOWN FROM THE PACIFIC COAST OF TROPICAL AMERICA, FROM TPIE TROPIC OF CANCER TO PANAMA. By DAVID S. JORDAIV. Four hundred and seven species of fishes are now known to inhabit the waters of the Pacific coast of tropical America betM^eeu Cape San Lucas and Panama. Our knowledge of these species is due chiefly to the studies of Dr. Gill, Dr. Glinther, Dr. Steiudaehuer, and Professors Jordan and Gilbert. Only a few collectors have given especial atten- tion to the fish fauna of this regiou, but the work of these has in nearly all cases been of exceptional value. -
Ination# 150150 I[T:I#:L9j:,T:I:-:" S-":,Lf
State of Alaska Nomination Form Department of Fish and Game Anadromous Waters Catalog Division of Sport Fish Region SWT COLD BAY A-2 AWC Number of Water Body 283-32-10100-0010 Name of Water body Old Mans Lagoon E usGS Name n Local Name addition I I oelaiqt n Correction n Backup Information ination# 150150 fur 'lsDate Revision Year: ZA/6 rlq Date "-rlzr Date \iIr{ Date OBSERVATION INFORMATION Species Date(s) Observed Rearing Present Anadromous Chum salmon X E D ! u ! |MPoRTANT:Providea||supportingdocumentationthatthiswaterbodyisimportantforth": numberoffishandlifestagesobserved; samplingmethods,samplingouraiionanoarea""rpLo; copieJoffierd-not"r; !t". ntt""n"-pyofamapshov'ing as \i\€rias other inrormation such ffiL"i4f;XtlXi$:5]fl,;if:r"*"Jt$rifihsnedes, as: specific stream reaches observeo as spawnins or rearins Gomments 283'32'10100listed in AK Peninsula M"""g"r""tArea Satmon sy"tilITlillF- nr""ent due to its simirarity to previousry i[T:i#:l9j:,T:i:-:"_s-":,lf-ly,g,:l"l_".:l_".lrrJ1listed AWC water bodies as either a ,'lake,'or,,polygon,; Name of Observer (please print): Signature: Agency: Address: Thiscertifiesthatinmybest.professiona|judgrnerrtandbe|iefthe"oou included in or deleted from the Anadromous foaters Catalog. Date:_ Revision 11/13 Name of Area Biologist (please print): cFp g& E '= i; e g .s3 H X.= e $i i g E s EHoi 5: P: s''B=: E 6 =3 EE .+:. ! s E.o '= E., o gP i E =O EE .E ! F A sJF'rp P F F i ! g€ * I E! ; ': FO O EP g= ;F:u E-E ig 2 +E P Es F *qi ie gE ; F ! € E gg E E E E € 7,1 s E n -e E:(ca B E =*= 'E E or-. -
Genetic Structure of the Deep-Sea Coral Lophelia Pertusa in the Northeast Atlantic Revealed by Microsatellites and Internal Tran
Molecular Ecology (2004) 13, 537–549 doi: 10.1046/j.1365-294X.2004.02079.x GeneticBlackwell Publishing, Ltd. structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences M. C. LE GOFF-VITRY,* O. G. PYBUS† and A. D. ROGERS‡ *School of Ocean & Earth Science, University of Southampton, Southampton, Oceanography Centre, Empress Dock, Southampton, SO14 3ZH, †Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, ‡British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Abstract The azooxanthellate scleractinian coral Lophelia pertusa has a near-cosmopolitan distribu- tion, with a main depth distribution between 200 and 1000 m. In the northeast Atlantic it is the main framework-building species, forming deep-sea reefs in the bathyal zone on the continental margin, offshore banks and in Scandinavian fjords. Recent studies have shown that deep-sea reefs are associated with a highly diverse fauna. Such deep-sea communities are subject to increasing impact from deep-water fisheries, against a background of poor knowledge concerning these ecosystems, including the biology and population structure of L. pertusa. To resolve the population structure and to assess the dispersal potential of this deep-sea coral, specific microsatellites markers and ribosomal internal transcribed spacer (ITS) sequences ITS1 and ITS2 were used to investigate 10 different sampling sites, distributed along the European margin and in Scandinavian fjords. Both microsatellite and gene sequence data showed that L. pertusa should not be considered as one panmictic population in the northeast Atlantic but instead forms distinct, offshore and fjord populations. -
The Last Glaciation of Shetland, North Atlantic the Last Glaciation of Shetland, North Atlantic
THE LAST GLACIATION OF SHETLAND, NORTH ATLANTIC THE LAST GLACIATION OF SHETLAND, NORTH ATLANTIC BY N.R. GOLLEDGE, A. FINLAYSON, T. BRADWELL AND J.D. EVEREST British Geological Survey, Murchison House, Edinburgh, UK Golledge, N.R., Finlayson, A., Bradwell, T. and Everest, J.D., ly maritime location in the North Atlantic north of 2008: The last glaciation of Shetland, North Atlantic. Geogr. the UK mainland at 60–61°N, roughly comparable Ann., 90 A (1): 37–53. to southern Norway or the southern tip of Green- ABSTRACT. Evidence relating to the extent, dynam- land, and consequently the region is highly sensi- ics, and relative chronology of the last glaciation of tive to climatic changes that may result from fluc- the Shetland Islands, North Atlantic, is presented tuations in atmospheric or oceanic polar fronts here, in an attempt to better illuminate some of the (Gordon et al. 1993). The current climate is wet and controversies that still surround the glacial history of the archipelago. We appraise previous interpre- moderately cool, with an annual precipitation of tations and compare these earlier results with new more than 1000 mm and a mean annual air evidence gleaned from the interpretation of a high temperature of around 7°C (Birnie 1993). Geologi- resolution digital terrain model and from field re- cally the islands are extremely complex and host a connaissance. By employing a landsystems ap- considerable diversity of bedrock lithologies, pre- proach, we identify and describe three quite differ- ent assemblages of landscape features across the dominantly metamorphic rocks but with plutonic main islands of Mainland, Yell and Unst. -
Concepcion Et Al. 2014
Bull Mar Sci. 90(1):257–275. 2014 research paper http://dx.doi.org/10.5343/bms.2012.1109 Regional population structure of Montipora capitata across the Hawaiian Archipelago 1 Pacific Biosciences, 1380 Willow GT Concepcion 1 * Rd, Menlo Park, California 94025. IB Baums 2 2 Department of Biology, The RJ Toonen 3 Pennsylvania State University, 208 Mueller Laboratory University Park, Pennsylvania 16802. ABSTRACT.—Montipora capitata Dana, 1846 is one of 3 Hawai‘i Institute of Marine the most successful reef-building corals in the Hawaiian Biology, University of Hawai‘i, Archipelago, both in terms of geographic distribution and PO Box 1346, Kaneohe, Hawaii relative abundance. Here, we examine population genetic 96744. structure using eight microsatellite loci to make inferences * Corresponding author email: about exchange among geographical regions throughout <[email protected]>. Hawaiian waters to inform management and conservation efforts. We collected biopsy samples n( = 560) from colonies at each of 11 islands/atolls along the archipelago in addition to Johnston Atoll, about 1328 km to the southwest. We found very few potential clones (<2%) in our sampling (551 of 560 colonies had unique multi-locus genotypes), indicating that reproduction is predominantly sexual. Likewise, significant genetic structuring among most locations (pairwise F΄ST = 0.05 to 0.49, only two <0.10; P < 0.01) indicates that gene flow between islands is highly limited. Overall, we found four main regional genetic groupings of M. capitata within state waters, one comprised of the Main Hawaiian Islands, one off the three northwestern-most Hawaiian Islands, and two groupings encompassing the middle of the northwestern chain and Johnston Atoll. -
Coastal and Offshore Geology
Manx Marine Environmental Assessment Physical Environment Coastal and Offshore Geology Scarlett Point, Isle of Man. Photo: P. McEvoy 2012 MMEA Chapter 2.3 October 2013 Lead authors: Kate Hawkins – Manx National Heritage Reviewed: Dave Burnett – Independent Laura Hanley – Isle of Man Marine Plan MMEA Chapter 2.3 – Physical Environment Manx Marine Environmental Assessment Version: November 2013 © Isle of Man Government, all rights reserved This document was produced as part of the Isle of Man Marine Plan Project, a cross Government Department project funded and facilitated by the Department of Infrastructure, Department of Economic Development and Department of Environment, Food and Agriculture. This document is downloadable from the Department of Infrastructure website at: http://www.gov.im/transport/planning/msp/mmea.xml. For information about the Isle of Man Marine Plan please see: http://www.gov.im/categories/planning-and-building-control/marine-planning/ Contact: Manx Marine Environmental Assessment. Isle of Man Marine Plan Planning & Building Control Division Department of Infrastructure Murray House, Mount Havelock Douglas, IM1 2SF Email: [email protected] Suggested Citations: Chapter Hawkins, K., Burnett, D., Hanley, L.J. 2013. Coastal and Offshore Geology. In Hanley et al., (eds.), Manx Marine Environmental Assessment. Isle of Man Marine Plan. Isle of Man Government, pp. 33 MMEA Hanley, L.J., Gell, F.G., Kennington, K., Stone, E., Rowan, E., McEvoy, P., Brew, M., Milne, K., Charter, L., Gallagher, M., Hemsley, K., Duncan, P.F. (eds.) 2013. Manx Marine Environmental Assessment. Isle of Man Marine Plan. Isle of Man Government. 2 Manx Marine Environmental Assessment – October 2013 MMEA Chapter 2.3 – Physical Environment Disclaimer: The Isle of Man Government has facilitated the compilation of this document, to provide baseline information towards the Isle of Man Marine Plan Project.