Biology and Stock Status of Inshore Demersal Scalefish Indicator Species in the Gascoyne Coast Bioregion R

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Stock Status of Inshore Demersal Scalefish Indicator Species in the Gascoyne Coast Bioregion R Fisheries Research Report No. 228, 2012 Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion R. Marriott, G. Jackson, R. Lenanton, C. Telfer, E. Lai, P. Stephenson, C. Bruce, D. Adams and J. Norriss Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Marriott, R., Jackson, G., Lenanton, R., Telfer, C., Lai, E., Stephenson, P., Bruce, C., Adams, D. and Norriss, J. (2012) Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion. Fisheries Research Report No. 228. Department of Fisheries, Western Australia. 216pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au © Department of Fisheries, Western Australia. July 2012. ISSN: 1035 - 4549 ISBN: 978-1-921845-13-0 ii Fisheries Research Report [Western Australia] No. 228, 2012 Contents Executive Summary .............................................................................................................. 1 Summary ........................................................................................................................ 4 Acknowledgements ........................................................................................................ 4 1.0 Introduction .................................................................................................................. 6 1.1 Background ............................................................................................................. 6 1.2 Indicator species approach ..................................................................................... 8 1.3 Need ........................................................................................................................ 8 1.4 Objectives .............................................................................................................. 9 2.0 The Gascoyne Marine Environment .......................................................................... 10 3.0 The Gascoyne Fishery and Management Arrangements ......................................... 11 3.1 Spatial management and jurisdictions .................................................................... 11 3.2 Commercial ........................................................................................................... 11 3.3 Recreational ............................................................................................................ 13 3.4 Charter .................................................................................................................... 14 3.5 Indigenous .............................................................................................................. 14 4.0 General methods ........................................................................................................... 15 4.1 Sample collection ................................................................................................... 15 4.1.1 Fishery-dependent methods ......................................................................... 15 4.1.2 Fishery-independent methods ....................................................................... 16 4.2 Sample processing .................................................................................................. 17 4.2.1 Otoliths ......................................................................................................... 17 4.2.2 Gonads .......................................................................................................... 19 4.3 Logbook data collection ......................................................................................... 19 4.4 Analyses – Rationale for spatial and temporal grouping of data ........................... 20 4.5 Analyses – Rationale for adopting different assessment approaches for the different indicator species ..................................................................................................... 22 5.0 Biological characteristics of key indicator species ..................................................... 24 5.1 Pink snapper ........................................................................................................... 24 5.1.1 Distribution, structure and movement ......................................................... 24 5.1.2 Age and growth ............................................................................................ 25 5.1.2.1 Introduction ............................................................................................... 25 5.1.2.2 Methods ..................................................................................................... 25 5.1.2.3 Results ....................................................................................................... 25 5.1.2.3.1 Contribution of samples from each sector ........................................... 25 5.1.2.3.2 Bias and precision ............................................................................... 26 5.1.2.3.3 Validation ............................................................................................. 27 5.1.2.3.4 Length and age composition of stock ................................................. 27 5.1.2.3.5 Growth ................................................................................................. 30 5.1.2.3.6 Natural mortality ................................................................................ 31 5.1.3 Recruitment .................................................................................................. 33 5.1.4 Reproduction ............................................................................................... 35 5.1.4.1 Introduction ............................................................................................... 35 5.1.4.2 Methods ..................................................................................................... 35 5.1.4.3 Results ....................................................................................................... 35 Fisheries Research Report [Western Australia] No. 228, 2012 iii 5.1.4.3.1 Annual reproductive cycles ................................................................. 35 5.1.4.3.2 Length and age at maturity .................................................................. 36 5.1.4.3.3 Fecundity ............................................................................................. 39 5.1.5 Other factors influencing susceptibility to exploitation ............................... 40 5.2 Spangled emperor .................................................................................................. 42 5.2.1 Distribution, structure and movement .......................................................... 42 5.2.2 Age and growth ............................................................................................ 42 5.2.2.1 Introduction ............................................................................................... 42 5.2.2.2 Methods ..................................................................................................... 43 5.2.2.3 Results ....................................................................................................... 43 5.2.2.3.1 Contribution of samples from each sector ........................................... 43 5.2.2.3.2 Bias and precision ................................................................................ 45 5.2.2.3.3 Validation ............................................................................................. 45 5.2.2.3.4 Length and age composition of stock .................................................. 45 5.2.2.3.5 Growth ................................................................................................. 49 5.2.2.3.6 Natural mortality ................................................................................. 50 5.2.2.4 Discussion.................................................................................................. 51 5.2.3 Recruitment .................................................................................................. 51 5.2.4 Reproduction ................................................................................................ 52 5.2.4.1 Introduction ............................................................................................... 52 5.2.4.2 Methods ..................................................................................................... 53 5.2.4.3 Results ....................................................................................................... 53 5.2.4.4 Discussion.................................................................................................. 55 5.2.5 Other factors influencing susceptibility to exploitation ............................... 55 5.3 Goldband snapper .................................................................................................. 56 5.3.1 Distribution, structure and movement .......................................................... 56 5.3.2 Age and growth ............................................................................................ 56 5.3.2.1 Introduction ..............................................................................................
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Order ZEIFORMES PARAZENIDAE Parazens P.C
    click for previous page Zeiformes: Parazenidae 1203 Order ZEIFORMES PARAZENIDAE Parazens P.C. Heemstra, South African Institute for Aquatic Biodiversity, South Africa iagnostic characters: Small to moderate-sized (to 30 cm) oblong fishes, the head and body com- Dpressed; body depth slightly less than head length, contained 2.6 to 2.9 times in standard length; head naked, the bones thin and soft; opercular bones weakly serrate; mouth large, terminal, the upper jaw extremely protrusile; maxilla widely expanded posteriorly, and mostly exposed when mouth is closed; no supramaxilla; jaws with 1 or 2 rows of small, slender, conical teeth; vomer with a few short stout teeth;gill rakers (including rudiments) 2 on upper limb, 8 on lower limb.Eye diameter about 1/3 head length and slightly less than snout length.Branchiostegal rays 7.Dorsal fin divided, with 8 slender spines and 26 to 30 soft rays; anal fin with 1 minute spine and 30 to 32 soft rays; dorsal-, anal-, and pectoral-fin rays un- branched; caudal fin forked, with 11 principal rays and 9 branched rays; pectoral fin with 15 or 16 rays, shorter than eye diameter; pelvic fins with 1 unbranched and 5 or 6 branched soft rays, but no spine, fin origin posterior to a vertical at pectoral-fin base. Scales moderate in size, weakly ctenoid, and deciduous; 2 lateral lines originating on body at upper end of operculum and running posteriorly about 4 scale rows apart, gradually converging to form a single line on caudal peduncle. Caudal peduncle stout, the least depth about equal to its length and slightly less than eye diameter.Vertebrae 34.Colour: body reddish or silvery; large black blotch on anterior margin of dorsal fin.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Zeidae Rafinesque, 1815 - True Dories [=Zeusidi Rafinesque, 1810, Zedia Rafinesque, 1815, ?Aplodia Rafinesque, 1815] Notes: Zeusidi Rafinesque, 1810B:15 [Ref
    FAMILY Zeidae Rafinesque, 1815 - true dories [=Zeusidi Rafinesque, 1810, Zedia Rafinesque, 1815, ?Aplodia Rafinesque, 1815] Notes: Zeusidi Rafinesque, 1810b:15 [ref. 3595] (ordine) Zeus [published not in latinized form before 1900; not available, Article 11.7.2] Zedia Rafinesque, 1815:83 [ref. 3584] (family) Zeus [stem corrected to Ze- by Latreille 1825:131 [ref. 31889], confirmed by Bonaparte 1831:158, 174 [ref. 4978]; stem changed to Zen- by Lowe 1839:82 [ref. 2829], confirmed by Gill 1873:787 [ref. 17631]; stem Ze- confirmed by Nelson 1976:192 [ref. 32838] and by Nelson 2006:307 [ref. 32486]] ?Aplodia Rafinesque, 1815:84 [ref. 3584] (subfamily) ? Zeus [no stem of the type genus, not available, Article 11.7.1.1] GENUS Zenopsis Gill, 1862 - John dories [=Zenopsis Gill [T. N.], 1862:126, Parazenopsis Cligny [A.], 1909:874 [1]] Notes: [ref. 1659]. Fem. Zeus nebulosus Temminck & Schlegel, 1845. Type by original designation (also monotypic). •Valid as Zenopsis Gill, 1862 -- (Wheeler 1973:349 [ref. 7190], Heemstra 1980:11 [ref. 14195], Machida in Masuda et al. 1984:118 [ref. 6441], Quéro in Whitehead et al. 1986:770 [ref. 13676], Heemstra 1986:437 [ref. 5660], Paxton et al. 1989:389 [ref. 12442], Parin 1989 [ref. 14116], Gomon et al. 1994:420 [ref. 22532], Heemstra 1999:2259 [ref. 24791], Tyler et al. 2003:36 [ref. 26742], Heemstra 2003:1209 [ref. 27043], Nakabo et al.2006:91 [ref. 28907], Paxton et al. 2006:800 [ref. 29077], Bray 2008:439 [ref. 30620], Shinohara et al. 2011:41 [ref. 31715]). Current status: Valid as Zenopsis Gill, 1862. Zeidae. (Parazenopsis) [ref. 850].
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Fish Species Inhabiting Lower Napa River and San Pablo Bay
    APPENDIX E-5 Technical Memo: Fish Species Inhabiting Lower Napa River and San Pablo Bay Technical Memorandum Fish Species Inhabiting the lower Napa River and San Pablo Bay Prepared by: J. A. Johnson, T. Linder, D. George, and R. Isquith, Applied Marine Sciences, Inc. June 25, 2014 Pelagic (Open Water) Fish Community Seventeen species of pelagic fish have been documented inhabiting the deep and shallow water areas of San Pablo Bay and the Carquinez Strait adjacent to the Napa River mouth into San Pablo Bay (Table 1,). Six of these species account for over 96 percent of the total abundance, with the dominant species, Northern anchovy (Engraulis mordax), comprising 76.5 percent of the fish inhabiting the pelagic community. Pacific herring (Clupea pallasii) is the second most common fish species inhabiting the Napa River mouth, accounting for 14.4 percent of the total abundance. The remaining dominant fish species include American shad (Alosa sapidissima), Longfin smelt (Spirinchus thaleichthys), Striped bass (Morone saxatilis) and Bay goby (Lepidogobius lepidus) which together account for 5.3 percent of the total abundance inhabiting the water column. Additional pelagic species that are present in low abundance include Chinook salmon (Oncorhynchus tshawytscha), Plainfin midshipman (Porichthys notatus), Jacksmelt (Atherinopsis californiensis), Splittail (Pogonichthys macrolepidotus), Threadfin shad (Dorosoma petenense), Delta smelt (Hypomesus transpacificus), Threespine stickleback (Gasterosteus aculeatus), Pacific staghorn sculpin (Leptocottus armatus), English sole (Parophrys vetulus) and Starry flounder (Platichthys stellatus). Important managed, protected, or special status pelagic zone species that are found in the study area, either seasonally or year-round, include Northern anchovy, Pacific herring, longfin smelt, delta smelt, steelhead, and Chinook salmon (AMS 2014, IEP 2010-2012, USFWS 2013, CDFW 2014).
    [Show full text]
  • 4 National Approaches Used to Describe and Delineate Marine Ecosystems and Subregions in the North Pacific
    Section 4 National Approaches 4 National Approaches Used to Describe and Delineate Marine Ecosystems and Subregions in the North Pacific Chris Harvey, Glen Jamieson, Patricia Livingston, Chang-Ik Zhang, Elena Dulepova, David Fluharty, Xianshi Jin, Tatsu Kishida, Jae Bong Lee, Mitsutaku Makino, R. Ian Perry, Vladimir Radchenko, Qisheng Tang, Inja Yeon and Elizabeth Fulton 4.1 Introduction With marine ecosystems facing increasing and often many of the large marine ecosystems (LMEs) in the unsustainable human demands, the need for PICES region (e.g., Sherman and Tang, 1999). Such comprehensive, integrated cross-sectoral resource spatio-temporal dynamics will likely be altered by management becomes ever clearer (Duda and global climate change, though in different ways in Sherman, 2002). Many hold that the most responsible different areas of the North Pacific. Second, marine strategy is ecosystem-based management (EBM), ecosystems typically extend hundreds of kilometers wherein factors such as ecological interactions, offshore and often beyond the exclusive economic socio-economic forces and human impacts are zone (EEZ) of a country. In many cases, the EEZs of explicit components of monitoring, assessment and multiple nations occupy the same ecosystem, often policy. While EBM has been variously defined by adjoining along extensive international borders. This many authors, some concepts are pervasive across all fact can limit the ability of a country to monitor the definitions: it is spatially discrete; it is adaptive; it full spatial extent of the ecosystem beyond its own incorporates dynamics, interactions and uncertainty territory, which in turn limits understanding of overall associated with physical, chemical and biological ecosystem function, structure and change.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]