Development of Leaf Shape and Vein Homologies in Five Species of the Genus Ipomoea (Convolvulaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
Temporal and Spatial Origin of Gesneriaceae in the New World Inferred from Plastid DNA Sequences
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 61–79. With 3 figures Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences MATHIEU PERRET1*, ALAIN CHAUTEMS1, ANDRÉA ONOFRE DE ARAUJO2 and NICOLAS SALAMIN3,4 1Conservatoire et Jardin botaniques de la Ville de Genève, Ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, Santo André, Brazil 3Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 4Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland Received 15 December 2011; revised 3 July 2012; accepted for publication 18 August 2012 Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Classification of Convolvulaceae: a Phylogenetic Approach
Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain. -
Collections Policy
Chicago Botanic Garden COLLECTIONS POLICY 1 Collections Policy July 2018 2 COLLECTIONS POLICY TABLE OF CONTENTS Mission Statement ................................................................................................................... 1 Intent of Collections Policy Document ..................................................................................... 1 Purpose of Collections .............................................................................................................. 1 Scope of Collections ................................................................................................................. 1 1) Display Plant Collections .......................................................................................... 2 Seasonal Display Collections ........................................................................... 2 Permanent Display Gardens ............................................................................ 2 Aquatic Garden ................................................................................... 2 Bonsai Collection ................................................................................. 3 Graham Bulb Garden .......................................................................... 3 Grunsfeld Children’s Growing Garden ................................................. 3 Circle Garden ....................................................................................... 3 Kleinman Family Cove ........................................................................ -
Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments. -
Trends in Flower Symmetry Evolution Revealed Through Phylogenetic and Developmental Genetic Advances
Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances Lena C. Hileman rstb.royalsocietypublishing.org Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instan- Review ces of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular Cite this article: Hileman LC. 2014 Trends in phylogenetic research and studies of character evolution as well as detailed flower symmetry evolution revealed through flower developmental genetic studies in a few model species (e.g. Antirrhinum phylogenetic and developmental genetic majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better under- advances. Phil. Trans. R. Soc. B 369: 20130348. standing of where during flowering plant diversification transitions from http://dx.doi.org/10.1098/rstb.2013.0348 radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme One contribution of 14 to a Theme Issue largely dependent on the functional action of the CYCLOIDEA gene is necess- ‘Contemporary and future studies in plant ary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both speciation, morphological/floral evolution the parallel recruitment of a CYC-dependent developmental programme and polyploidy: honouring the scientific during independent transitions to bilateral flower symmetry, and the modifi- contributions of Leslie D. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
KNOX Overexpression in Transgenic Kohleria (Gesneriaceae) Prolongs the Activity of Proximal Leaf Blastozones and Drastically Alters Segment Fate
Planta (2009) 230:1081–1091 DOI 10.1007/s00425-009-0997-0 ORIGINAL ARTICLE KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate Sina Barth Æ Thomas Geier Æ Klaus Eimert Æ Bernard Watillon Æ Rajbir S. Sangwan Æ Stefan Gleissberg Received: 23 March 2009 / Accepted: 21 July 2009 / Published online: 14 August 2009 Ó Springer-Verlag 2009 Abstract KNOX (knotted1-like homeobox) genes have a whole leaf, with organogenic activity persisting between a widely conserved role in the generation of dissected leaves. distal maturation zone and a proximal intercalary elonga- Ectopic KNOX activity in leaves in various angiosperm tion zone. The architecture of vascular bundles is severely lineages causes leaf form changes that can elucidate how altered, with a reduced midvein and a more palmate the configuration of leaf development evolved. We present venation. The initial establishment of organogenically an analysis of leaf morphology and morphogenesis in competent primordial margins (marginal blastozones) and transgenic Kohleria lines overexpressing a heterologous the onset of tissue differentiation in early stages of leaf KNOX gene. Kohleria, like many members of Gesneria- development were similar in wild-type and KNOX over- ceae, has simple-serrated leaves with pinnate venation. expressing lines. However, leaves overexpressing KNOX KNOX overexpression causes prolonged segment prolifer- often failed to fully mature, and persistent marginal blas- ation in proximal, but not distal, parts of leaf blades. tozones were found at the base of blades in mature portions Elaborate dissected segments reiterate the zonation of the of the shoot. We conclude that KNOX-mediated perpetua- tion of marginal blastozones in Kohleria is sufficient to induce a set of processes that result in highly dissected Electronic supplementary material The online version of this leaflets, which are unusual in this plant family. -
Oxford Plant Systematics with News from Oxford University Herbaria (OXF and FHO), Department of Plant Sciences, Oxford
Oxford Plant Systematics With news from Oxford University Herbaria (OXF and FHO), Department of Plant Sciences, Oxford OPS 24 June 2018 Foreword Herbaria are slices through plant diversity in Contents time and space, and long-term scientific investments with unexpected cultural value. Foreword Until recently in Oxford University Herbaria Stephen A. Harris …………………………………………………………..……….. 2 that slice was about 400 years. Through his research on a collection of specimens News overlooked for over a century, Sandy Awards and appointments, staff retirement and Blue Plaque unveiled to George Hetherington has extended that slice to about Claridge Druce ……………………………………………………………………… 3 400 million years. Using the earliest-known Polynesian sweet potato specimen (housed in Publications 2017 ……………………………………………………………………. 3 the Natural History Museum London), Pablo Muñoz Rodríguez and colleagues have Expeditions and visits …………………………………………………………….…. 4 determined the likely age of this important crop plant and reopened discussion of human Roots in the Palaeobotanical Collection migration patterns around the Pacific. Alexander J. Hetherington and Liam Dolan …………………………….……….… 4 George Claridge Druce, the Oxford-based pharmacist, politician and natural historian, What did the Garden grow? amassed a herbarium of several hundred Stephen A. Harris ……………………………………………………….………….. 5 thousand specimens; a snapshot of British plant diversity before 1930. Serena Marner Painting by numbers presents an outline of this controversial Rosemary Wise ……………………………………………………………….….…. 7 figure’s contribution to British field botany. His specimens contribute to baseline date George Claridge Druce’s career as a botanist upon which change in the British flora can be Serena K. Marner ………………………………………………………………..…. 8 investigated, as outlined by Keith Kirby. For herbaria to be records of current plant Some are born rare, some have rareness thrust upon them diversity in the future, new specimens must Keith Kirby …………………………………………………………………….…. -
Genetic Changes Contributing to the Parallel Evolution
Research GeneticBlackwellOxford,NPHNew0028-646X1469-8137©292910.1111/j.1469-8137.2009.02929.xJune0751???763???OriginalXX The 2009Phytologist Authors UK Article Publishing (2009). Ltd Journal compilation © New Phytologist (2009) changes contributing XXto the parallel evolution of red floral pigmentation among Ipomoea species Matthew A. Streisfeld and Mark D. Rausher Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA Summary Author for correspondence: • The repeated, independent evolution of phenotypic traits reflects adaptation to Matthew A. Streisfeld similar selective pressures. In some circumstances, parallel phenotypic evolution has + Tel: 1 919 684 3378 a common genetic basis. Here, we investigate the types of genetic change respon- Email: [email protected] sible for the repeated evolution of red flowers among Ipomoea species. Received: 7 April 2009 • We identified three independent transitions from cyanidin- (blue/purple) to Accepted: 15 May 2009 pelargonidin-type (red) anthocyanin pigments among Ipomoea species. The genetic basis for these transitions was examined using transgenics and gene expression New Phytologist (2009) 183: 751–763 assays. Using a literature survey to estimate the expected spectrum of mutation types doi: 10.1111/j.1469-8137.2009.02929.x capable of producing red flowers, we evaluated whether the observed distribution of mutation types differed from expectation. • In these species, red floral pigmentation appears to be caused by the disruption Key words: anthocyanin, flower color, gene expression, Ipomoea, parallel of flux through the anthocyanin pathway at the same position. Results implicate evolution. tissue-specific regulatory changes in the same gene, which suggests the possibility that flower color evolved independently via the same genetic mechanism.