An Examination of the Spatial and Temporal Generality of the Influence of Ecosystem Engineers on the Composition of Associated A

Total Page:16

File Type:pdf, Size:1020Kb

An Examination of the Spatial and Temporal Generality of the Influence of Ecosystem Engineers on the Composition of Associated A Aquat Ecol (2007) 41:129–147 DOI 10.1007/s10452-006-9053-3 ORIGINAL PAPER An examination of the spatial and temporal generality of the influence of ecosystem engineers on the composition of associated assemblages Katrin Berkenbusch Æ Ashley A. Rowden Received: 29 June 2005 / Accepted: 8 May 2006 / Published online: 5 August 2006 Ó Springer Science+Business Media B.V. 2006 Abstract The present study evaluated the gen- between sites were best explained by sediment erality of ecosystem engineering processes by variables. In New Zealand, % fines and seagrass examining the influence of sympatric burrowing debris showed the highest correlation to differ- shrimps (Callianassidae) and intertidal seagrasses ences in assemblage composition, and in the (Zosteraceae) on benthic assemblage composi- U.S.A. % fines, % carbon and sediment turnover tion in two temperate regions, south-eastern New (by shrimp) appeared to be the most important Zealand and north-western U.S.A. In each re- environmental parameters measured. Four to six gion, intertidal macrofauna assemblage composi- taxa exhibited the greatest discriminating signifi- tion was determined at sites of different cance (including corophiid amphipods, spionid burrowing shrimp/seagrass density and where polychaetes and oligochaetes) for dissimilarities both species co-occured, in three different size in assemblage composition observed at the dif- estuaries/tidal inlets, on two occasions. Results ferent sites, with generally lower abundances at from both regions showed that the presence of shrimp than at seagrass sites. The present study shrimps and seagrasses consistently influenced the highlights the functional importance of seagrasses composition of the associated infaunal assem- and bioturbating shrimps as ecosystem engineers blages at all sites, in both summer and winter. in soft-sediment environments, and reveals the Macrofauna assemblages at shrimp sites were generality of their influence on associated macro- significantly different to those at seagrass-only invertebrate assemblages. The findings also allow and mixed sites, whereas the composition of the for further development of a heuristic model for latter sites was similar. The differences observed ecosystem engineering by shrimp and seagrass which indicate that numerical models that aim to explore the relationship between ecosystem K. Berkenbusch (&) Æ A. A. Rowden engineer populations and habitat modification National Institute of Water and Atmospheric should be expanded to capture the interaction of Research, Private Bag 14-901, Wellington, co-occurring engineers and be both spatially and New Zealand e-mail: [email protected] temporally explicit. Present Address: Keywords Callianassidae Æ Macro-invertebrate K. Berkenbusch assemblages Æ Ecosystem engineer Æ Portobello Marine Laboratory, Department of Marine Science, University of Otago, P.O. Box 8, Environmental variables Æ Intertidal sandflat Æ Portobello, Dunedin, New Zealand Temperate regions Æ Zosteraceae 123 130 Aquat Ecol (2007) 41:129–147 Introduction classic examples of ecosystem engineers (Levinton 1995), as they affect physical and biogeochemical Ecologists concerned with the organisation of properties of the sediment, such as near-surface natural communities have long recognised the sediment stability, sediment grain size, organic importance of species that have a disproportion- content and nutrient loading; environmental ate influence on assemblage composition. Some parameters which affect the habitat suitability organisms, such as so-called ‘keystone’ or ‘foun- for other species (de Wilde 1991). However, dation’ species, profoundly impact associated application of the formal assessment criteria for organisms in an assemblage through predation recognising and scaling the influence of ecosystem and competition; and ecological experiments and engineers (Jones et al. 1994) has been lacking for theory have predominantly focused on consider- marine bioturbators until very recently. ing how these biotic interactions structure ter- Callianassid shrimps (Thalassinidea), also restrial and aquatic assemblages (Paine 1966; referred to as ghost, burrowing or mud shrimps, Dayton 1972; Schoener 1983). However, rela- are a ubiquitous group of decapod crustaceans tively recent ecological studies have highlighted that have long been recognised as significant the importance of abiotic interactions between infaunal bioturbators of intertidal and shallow organisms and their environment, which can be subtidal soft sediments (Suchanek 1983; Swift equally dramatic to those of keystone species, but 1993; Cade´e 2001). Application of the formal are not included in the current ecological frame- ecosystem engineer assessment criteria to one work (Bertness 1985; Jones et al. 1994; Bruno such ghost shrimp, Callianassa filholi, identified et al. 2003). Jones et al. (1994) tried to address this species as an important allogenic ecosystem this shortfall by proposing the concept of organ- engineer, which influenced macrofauna assem- isms as ‘‘physical ecosystem engineers’’. This no- blage composition over a small spatial scale tion encompasses interactions between organisms through its large per capita bioturbation activity and their environment that are not directly tro- (Berkenbusch and Rowden 2003). Having phic or competitive, and which result in the established the engineering significance of this modification, maintenance and/or creation of species (endemic to New Zealand) in one habitats. That is, rather than providing resources intertidal habitat raises the question as to whe- directly, ecosystem engineers physically change ther ghost shrimp species are generally impor- their environment and impact the supply of re- tant in structuring assemblage composition sources for other species, thereby affecting spe- across similar habitats at different spatial scales. cies abundance and diversity, population, The study on the impact of Callianassa filholi community and ecosystem stability (Jones et al. bioturbation on associated community assem- 1994). Jones et al. (1994) distinguished between blages also indicated that the engineering influ- two kinds of engineers: ‘Autogenic engineers’ ence of the ghost shrimp was moderated by the impact the habitat in which they live through their presence of a small intertidal seagrass Zostera own physical structures and are an integral part of capricorni (previously Zostera novozelandica, the engineered ecosystem. ‘Allogenic engineers’, see Les et al. 2002) which buffered the effect of on the other hand, modulate resources from one the shrimp during summer, when seagrass bio- physical state to another through their behaviour mass was high. Zostera capricorni can be con- and activity. sidered an autogenic ecosystem engineer, as Following the initial proposal of the concept, a seagrasses, for example, provide living space for number of studies illustrated its application to others through their own physical structure terrestrial and aquatic habitats by providing (Berkenbusch et al. 2000, and see conceptual examples of plants and animals as autogenic or model in Berkenbusch and Rowden 2003). The allogenic ecosystem engineers; e.g. Sphagnum temporally manifested moderation of the influ- moss (van Breemen 1995) and detritivorous ence of one type of engineering species on that tropical fish (Flecker 1996). In the marine envi- of another raises the question as to whether such ronment, bioturbators have been presented as an interaction generally occurs between ghost 123 Aquat Ecol (2007) 41:129–147 131 shrimps and seagrasses, which frequently co- region, three estuaries/tidal inlet locations were occur in the same habitats. selected that were 10s of km apart and which Thus, the present study aimed to assess the contained both ghost shrimp and seagrass within generality of ecosystem engineering processes for the same intertidal area. Estuaries/inlets were sympatric allogenic engineering shrimps (Cal- selected to have different areas, but with similar lianassidae) and autogenic engineering seagrasses tidal regimes across regions. In New Zealand, (Zosteraceae). Specifically, we addressed the fol- study locations were Otago Harbour (46 km2), lowing questions: (1) Do ghost shrimps and Blueskin Bay (6.9 km2) and Papanui Inlet seagrasses consistently influence associated ben- (3.5 km2). In the U.S.A., the study locations were thic assemblages over different spatial scales and Tillamook Bay (33.5 km2), Yaquina Estuary time? and (2) What are the potential mechanisms (15.8 km2) and Netarts Bay (9.4 km2). All estu- by which these ecosystem engineers exert their aries/tidal inlets were characterised by semi- influence on associated macrofauna assemblages? diurnal tides with a similar tidal range (1.4–2.2 m Addressing such questions allows for the explo- in New Zealand, 1.3–2.9 m in the U.S.A.). Ghost ration of what Jones et al. (1997) term ‘multiple shrimps included in the study were Callianassa engineers and coupled and uncoupled interac- filholi in New Zealand, and Neotrypaea califor- tions’ and ‘coupled engineering and trophic cas- niensis in the U.S.A. Both callianassid species are cades’, the development of the local heuristic burrowing deposit-feeders, of similar size (12– ecosystem engineering model earlier proposed for 16 mm adult carapace length) and commonly shrimp and seagrass (Berkenbusch and Rowden occur in intertidal soft-sedimentary habitats in 2003), and the potential to develop or parame- their respective regions (MacGinitie 1934; Devine terize the models of
Recommended publications
  • Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
    73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein.
    [Show full text]
  • Cancer Pagurus) in Norway - Effect of Temperature and Other Environmental Parameters at High Latitudes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334051811 Life history and distribution of the edible crab (Cancer pagurus) in Norway - Effect of temperature and other environmental parameters at high latitudes Thesis · May 2019 CITATION READS 1 159 1 author: Snorre Bakke Norwegian University of Science and Technology 39 PUBLICATIONS 150 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CLIMA: Changes in fish distribution and species composition as a result of climatic changes in the East Greenland Ecosystem: implications for fisheries and management View project Availability of essential and toxic elements from marine resources View project All content following this page was uploaded by Snorre Bakke on 31 March 2020. The user has requested enhancement of the downloaded file. Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics Life history and distribution of the edible crab (Cancer pagurus) in Norway Effect of temperature and other environmental parameters at high latitudes — Snorre Bakke A dissertation for the degree of Philosophiae Doctor – May 2019 Life history and distribution of the edible crab (Cancer pagurus) in Norway Effect of temperature and other environmental parameters at high latitudes Snorre Bakke Thesis submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in Natural Science Ålesund/Tromsø, Norway May 2019 Graduating institute: Department
    [Show full text]
  • Synopsis of the Family Callianassidae, with Keys to Subfamilies, Genera and Species, and the Description of New Taxa (Crustacea: Decapoda: Thalassinidea)
    ZV-326 (pp 03-152) 02-01-2007 14:37 Pagina 3 Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea) K. Sakai Sakai, K. Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea). Zool. Verh. Leiden 326, 30.vii.1999: 1-152, figs 1-33.— ISSN 0024-1652/ISBN 90-73239-72-9. K. Sakai, Shikoku University, 771-1192 Tokushima, Japan, e-mail: [email protected]. Key words: Crustacea; Decapoda; Thalassinidae; Callianassidae; synopsis. A synopsis of the family Callianassidae is presented. Defenitions are given of the subfamilies and genera. Keys to the sufamilies, genera, as well as seperate keys to the species occurring in certain bio- geographical areas are provided. At least the synonymy, type-locality, and distribution of the species are listed. The following new taxa are described: Calliapaguropinae subfamily nov., Podocallichirus genus nov., Callianassa whitei spec. nov., Callianassa gruneri spec. nov., Callianassa ngochoae spec. nov., Neocallichirus kempi spec. nov. and Calliax doerjesti spec. nov. Contents Introduction ............................................................................................................................. 3 Systematics .............................................................................................................................. 7 Subfamily Calliapaguropinae nov. .....................................................................................
    [Show full text]
  • Shrimp Neotrypaea Californiensis to Intertidal Shell and Mud Habitats
    MARINE ECOLOGY PROGRESS SERIES Published April 30 Mar Ecol Prog Ser l Effects of substrate selection and post-settlement survival on recruitment success of the thalassinidean shrimp Neotrypaea californiensis to intertidal shell and mud habitats Kristine L. Feldmanlr*,David A. ~rmstrongl,David B. ~ggleston'~",Brett R. ~umbauld~ 'School of Fisheries, Box 357980, University of Washington, Seattle, Washington 98195, USA 'Washington State Department of Fish and Wildlife, Willapa Bay Field Station, PO Box 190, Ocean Park, Washington 98640, USA ABSTRACT: We quantified recruitment of young-of-the-year (YOY)burrowing thalassinidean shrimp Neotrypaea californiensis to 2 habitats of differing structural complexity-epibenthic bivalve shell and bare mudflat-and examined how differential settlement and post-settlement predation influence patterns of YOY abundance. Local densities of shrimp were quantified prlor to construction of shell habitat in Grays Harbor estuary, Washington (USA). Subsequent recruitment of YOY shrimp to epiben- thic shell and bare mudflat was measured during a peak settlement pulse and 10 mo post-settlement. In addition, patches of sediment overlying shell within the shell plot ('subsurface shell') were sampled 10 mo post-settlement. Differential settlement in shell and mud habitats was quantified in field and laboratory experiments. We also examined predator-prey interactions between YOY Dungeness crabs Cancer magister and newly settled shrimp in shell habitat in a laboratory experiment in which prey consumption crab-' was quantified as a function of shrimp density. Results of our studies indicate that dense coverage of epibenthic shell applied to the intertidal site reduced recruitment of ghost shrimp. Epibenthic shell habitat had significantly fewer YOY shrimp than bare mudflat at peak settlement and 10 mo post-settlement, and significantly fewer shrimp than 'subsurface shell' at 10 mo post-settlement.
    [Show full text]
  • Disturbance Facilitates the Coexistence of Antagonistic Ecosystem Engineers in California Estuaries
    Ecology, 95(8), 2014, pp. 2277–2288 Ó 2014 by the Ecological Society of America Disturbance facilitates the coexistence of antagonistic ecosystem engineers in California estuaries 1,2,4 1 3 2 MAX C. N. CASTORANI, KEVIN A. HOVEL, SUSAN L. WILLIAMS, AND MARISSA L. BASKETT 1Coastal and Marine Institute Laboratory and Department of Biology, San Diego State University, San Diego, California 92182 USA 2Department of Environmental Science and Policy, University of California, Davis, California 95616 USA 3Bodega Marine Laboratory and Department of Evolution and Ecology, University of California–Davis, Bodega Bay, California 94923 USA Abstract. Ecological theory predicts that interactions between antagonistic ecosystem engineers can lead to local competitive exclusion, but disturbance can facilitate broader coexistence. However, few empirical studies have tested the potential for disturbance to mediate competition between engineers. We examined the capacity for disturbance and habitat modification to explain the disjunct distributions of two benthic ecosystem engineers, eelgrass Zostera marina and the burrowing ghost shrimp Neotrypaea californiensis, in two California estuaries. Sediment sampling in eelgrass and ghost shrimp patches revealed that ghost shrimp change benthic biogeochemistry over small scales (centimeters) but not patch scales (meters to tens of meters), suggesting a limited capacity for sediment modification to explain species distributions. To determine the relative competitive abilities of engineers, we conducted reciprocal transplantations of ghost shrimp and eelgrass. Local ghost shrimp densities declined rapidly following the addition of eelgrass, and transplanted eelgrass expanded laterally into the surrounding ghost shrimp-dominated areas. When transplanted into eelgrass patches, ghost shrimp failed to persist. Ghost shrimp were also displaced from plots with structural mimics of eelgrass rhizomes and roots, suggesting that autogenic habitat modification by eelgrass is an important mechanism determining ghost shrimp distributions.
    [Show full text]
  • Crustacea: Decapoda: Thalassinidea)
    11 June 1992 PROC. BIOL. SOC. WASH. 105(2), 1992, pp. 324-330 TWO NEW CALLIANASSID SHRIMPS FROM BRAZIL (CRUSTACEA: DECAPODA: THALASSINIDEA) Sergio de A. Rodrigues and Raymond B. Manning Abstract. —Biffarius delicatulus and Eucalliax cearaensis are described from Brazil. Each species is the third of their genus to be recorded from the western Atlantic and the first of their genus known from South America. Among the unstudied callianassids ac­ Diagnosis.—Size very small, cl less than cumulated by the senior author since his 7 mm in adults. Telson subquadrate, un­ review of the Brazilian callianassids (Ro­ armed. Mxp3 ischium-merus operculiform, drigues 1971) are two previously unde- without exopod, inner surface without crest scribed species. One of these is referable to or teeth. Male with one form of cheliped, the genus Biffarius and the other to Eucal­ merus of both chelipeds with ventral hook. liax; both of these" genera were recently Plp2 of male small, uniramous. Uropods erected for American species by Manning unarmed. &Felder(1991). Description.—Carapace smooth, with The holotypes have been deposited in the dorsal oval, without cardiac prominence, Museu de Zoologia, Universidade de Sao cervical groove distinct, linea thalassinica Paulo, Sao Paulo, Brazil (MZUSP) and distinct, parallel to longitudinal axis of body; paratypes are in that collection and in the rostrum short; lateral frontal projections ab­ National Museum of Natural History, sent. Smithsonian Institution, Washington, D.C. Abdominal somites smooth, somite 1 (USNM). saddle-like, shorter than others; somite 2 Carapace length (cl) is postorbital cara­ longer than others, with small tuft of setae pace length in millimeters (mm).
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Burrowing and Feeding Ecology of the Ghost Shrimp Biffarius Arenosus (Decapoda: Callianassidae)
    BURROWING AND FEEDING ECOLOGY OF THE GHOST SHRIMP BIFFARIUS ARENOSUS (DECAPODA: CALLIANASSIDAE). Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of Victoria University of Technology by Fiona Louise Bird B.Sc. (Hons) Department of Biological and Food Sciences Faculty of Science Victoria University of Technology November, 1997 THESIS 595.3887 BIR 30001005348901 Bird, Fiona L Burrowing and feeding ecology of the ghost shrimp Biffarius arenosus Frontispiece Bijfarius arenosus 11 DECLARATION The research in this thesis has not been previously submitted for a degree or diploma in any University. The thesis contains no material that has been previously published or written by another person, except where due reference is made in the thesis itself. FIONA L. BIRD ni ABSTRACT The thalassinidean ghost shrimp, Biffarius arenosus (Decapoda: Callianassidae), is a dominant component of coastal soft sediment communities in temperate south-eastern Australia. This thesis investigated the burrowing and feeding ecology of a population of shrimps inhabiting an intertidal sandflat in Western Port, Victoria. Biffarius arenosus constructs dynamic, unlined burrows with a complex shape indicating that the shrimps exploit the subsurface food supply. A multiple stable isotope study revealed that the food source was sedimentary organic matter, primarily derived from decomposing seagrass and seagrass epiphytes. Feeding and burrowing activity of the shrimps resulted in comparatively larger particles being ejected from burrows to the sediment surface. An investigation of the impact of burrowing and feeding activity on physiochemical and microbial properties of the sediment revealed that the burrow wall sediments were relatively more oxidised (measured via platinum redox electrodes) and had higher microbial enzyme activity rates (quantified via the hydrolysis of fluorescein diacetate) than surrounding subsurface sediments.
    [Show full text]
  • Vertical Distribution and Migration of Decapod Larvae in Relation to Light and Tides in Willapa Bay, Washington
    Estuaries and Coasts (2011) 34:1255–1261 DOI 10.1007/s12237-011-9405-7 Vertical Distribution and Migration of Decapod Larvae in Relation to Light and Tides in Willapa Bay, Washington Joanne K. Breckenridge & Stephen M. Bollens Received: 24 November 2010 /Revised: 18 March 2011 /Accepted: 11 April 2011 /Published online: 3 May 2011 # Coastal and Estuarine Research Federation 2011 Abstract We investigated the occurrence of behaviors that of food acquisition, predation levels, metabolism, and maximize predator avoidance and seaward transport in reproduction (Bollens and Frost 1991;Hays2003). estuarine decapod zoeae by collecting larvae from discrete Because current speed and direction may vary with depth, depths in a partially mixed estuary, Willapa Bay, Washington, the vertical distribution of planktonic organisms also USA, and relating their abundance and vertical distribution to a largely influences its horizontal distribution and is of suite of environmental variables. Abundances of first zoeae of particular importance to species with a benthic adult stage Neotrypaea californiensis and Pinnotheridae were associated (Thorson 1950). with tidal phase, diel phase, and water height. Both taxa were Planktonic larvae of many benthic estuarine species most abundant during ebb tides, and abundances increased develop in coastal waters, returning to estuaries as with water height, suggesting behaviors that enhanced postlarvae for settlement (Bilton et al. 2002; Roegner et seaward transport. Additionally, N. californiensis were both al. 2007). In addition to increasing genetic exchange and shallower and more abundant at night, indicative of behaviors dispersal potential, development in coastal waters is to avoid visual predators. Our results suggest that both tidal considered favorable because estuaries are thought to have transport and predator avoidance are important and sometimes both a higher concentration of predators and to be more interactive selective forces shaping larval decapod behavior.
    [Show full text]
  • Upogebia Deltaura (Crustacea: Thalassinidea) in Clyde Sea Maerl
    PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON H3(l):70-76. 2000. A new genus and species of ghost shrimp from Tobago, West Indies (Crustacea: Decapoda: Callianassidae) Richard Heard and Raymond B. Manning (RH) Gulf Coast Research Laboratory, East Beach Road, Ocean Springs, Mississippi 39564, U.S.A.; (RBM) Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, U.S.A. Abstract.—The new genus Pseudobijfarius is the seventh genus of Calli- anassinae recognized from the Americas. This monotypic genus is based on its type species from Tobago, West Indies, Pseudobijfarius caesari, new species. It differs from all members of the subfamily in having a very short, stout upper flagellum on the Al peduncle. Collections of a very small callianassid do-, false, with the generic name Biffarius, were made on Tobago by two individuals alluding to the resemblance of the present at different times, Lois Nickell in 1989 and genus to the latter The gender is masculine. Richard Heard in 1992 and 1993. The spe­ Diagnosis.—Size relatively small, tl of cies was initially identified as a member of adults less than 30 mm. Carapace with acute Biffarius Manning & Felder, 1991, but clos­ rostral projection, lacking rostral carina or er examination after Heard's collections of spine. Cornea dorsal, subterminal, disk- 1993 revealed that it represented not only a shaped, corneal elements distinct. Al pedun­ new species but also a new genus as well. cle longer than A2 peduncle; dorsal flagel­ The new taxa are named here. lum of Al peduncle short and stout, shorter The types have been deposited in the Na­ than peduncle.
    [Show full text]
  • Methods Collecting Axiidea and Gebiidea (Decapoda): a Review 5-21 Ann
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2015 Band/Volume: 117B Autor(en)/Author(s): Dworschak Peter C. Artikel/Article: Methods collecting Axiidea and Gebiidea (Decapoda): a review 5-21 Ann. Naturhist. Mus. Wien, B 117 5–21 Wien, Jänner 2015 Methods collecting Axiidea and Gebiidea (Decapoda): a review P.C. Dworschak* Abstract Axiidea and Gebiidae (formerly treated together as Thalassinidea) have a crypic lifestyle. Collecting these shrimp therefore requires special field methods. The present paper reviews these methods according to habitats and provides recommendations as well as data on their efficiency. In addition, information on the preservation of these animals is presented. Key words: Thalassinidea, Axiidea, Gebiidea, method, collecting, preservation Zusammenfassung Maulwurfskrebse aus den zwei Unterordungen der zehnfüßigen Krebes Axiidea und Gebiidea (früher zusammengefaßt als Thalassinidea) kommen in temperaten, subtropischen und tropischen Meeren vor und zeichnen sich durch ein Leben im Verborgenen aus. Viele Arten legen tiefe und ausgedehnte Bauten an. Diese Lebensweise erfordert eigene Methoden, um die Krebse zu fangen. Die verschiedenen Fangmethoden werden hier vorgestellt und Angaben zur Effizienz gemacht. Zusätzlich werden Angaben zur Fixierung und Konservierung der Krebse präsentiert. Introduction Formerly treated together as the thalassinideans, the infraorders Gebiidea DE SAINT LAURENT, 1979 and Axiidea DE SAINT LAURENT, 1979 represent two distinctly separate groups of decapods (ROBLES et al. 2009; BRACKEN et al. 2009; DWORSCHAK et al. 2012, POORE et al., 2014). They are commonly called mud shrimp or ghost shrimp, although they are only distantly related to true (dendrobranchiate or caridean) shrimp.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]