440 FELDER.P65
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult). -
The Mediterranean Decapod and Stomatopod Crustacea in A
ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1. -
Upogebia Pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea the Blue Mud Shrimp Family: Upogebiidae
Phylum: Arthropoda, Crustacea Upogebia pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea The blue mud shrimp Family: Upogebiidae Taxonomy: Dana described Gebia (on either side of the mouth), two pairs of pugettensis in 1852 and this species was later maxillae and three pairs of maxillipeds. The redescribed as Upogebia pugettensis maxillae and maxillipeds attach posterior to (Stevens 1928; Williams 1986). the mouth and extend to cover the mandibles (Ruppert et al. 2004). Description Carapace: Bears two rows of 11–12 Size: The type specimen was 50.8 mm in teeth laterally (Fig. 1) in addition to a small length and the illustrated specimen (ovigerous distal spines (13 distal spines, 20 lateral teeth female from Coos Bay, Fig. 1) was 90 mm in on carapace shoulder, see Wicksten 2011). length. Individuals are often larger and reach Carapace with thalassinidean line extending sizes to 100 mm (range 75–112 mm) and from anterior to posterior margin (Wicksten northern specimens are larger than those in 2011). southern California (MacGinitie and Rostrum: Large, tridentate, obtuse, MacGinitie 1949; Wicksten 2011). rough and hairy (Schmitt 1921), the sides Color: Light blue green to deep olive brown bear 3–5 short conical teeth (Wicksten 2011). with brown fringes on pleopods and pleon. Rostral tip shorter than antennular peduncle. Individual color variable and may depend on Two short processes extending on either side feeding habits (see Fig. 321, Kozloff 1993; each with 0–2 dorsal teeth (Wicksten 2011). Wicksten 2011). Teeth: General Morphology: The body of decapod Pereopods: Two to five simple crustaceans can be divided into the walking legs. -
Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. -
Collections of the Natural History Museum, Zoological Section «La Specola» of the University of Florence Xxvii
Atti Soc. tosc. Sci. nat., Mem., Serie B, 116 (2009) pagg. 51-59 G. Innocenti (*) COLLECTIONS OF THE NATURAL HISTORY MUSEUM, ZOOLOGICAL SECTION «LA SPECOLA» OF THE UNIVERSITY OF FLORENCE XXVII. Crustacea, CLASSES Branchiopoda, Ostracoda AND Maxillopoda, SUBCLASSES BRANCHIURA AND Copepoda Abstract - A list of the specimens belonging to the class- Di Caporiacco, 1949; Colosi, 1951; Mascherini, 1991). es Branchiopoda, Ostracoda and Maxillopoda, subclasses Moreover, few specimens, from former Italian colonial Branchiura and Copepoda, preserved in the Zoological Sec- sites, were determined by Giuseppe Colosi (1892-1975). tion «La Specola» of the Natural History Museum of the University of Florence is given. Class Ostracoda Key words - Branchiopoda, Ostracoda, Maxillopoda, The bulk of the collection consists of specimens col- Branchiura, Copepoda, Granata, systematics, collections. lected during the oceanographic cruise made by the R/V «Liguria» (1903-1905) that circumnavigated the world Riassunto - Cataloghi del Museo di Storia Naturale dell’Uni- (Leva, 1992-1994). The material has been determined versità di Firenze, Sezione di Zoologia «La Specola». XXVII. by Leopoldo Granata (1885-1940), who described sev- Crustacea, Classi Branchiopoda, Ostracoda e Maxillopoda, eral new species, however only one, Cyclasterope ligu- Sottoclassi Branchiura e Copepoda. Sono elencati gli esem- riae, is extant in the collection (Granata, 1914, 1915; plari appartenenti al phylum Crustacea, Classi Branchiopoda, Colosi, 1940). Ostracoda e Maxillopoda, Sottoclassi Branchiura e Copepoda Ostracoda collected in Somalia, during the research conservati nelle collezioni della Sezione di Zoologia «La Spe- cola» del Museo di Storia Naturale dell’Università di Firenze. missions conducted by the Centro di Faunistica Tropi- cale of CNR, were studied by Koen Martens (Ghent Parole chiave - Branchiopoda, Ostracoda, Maxillopoda, University, Belgium). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Cretaceous Fossils from the Chesapeake and Delaware Canal
Cretaceous S;cial Publication No. 18 Fossils from the Chesapeake and Delaware Canal A Guide for Students and Collectors Edward M. Lauginiger / /~ / CRETACEOUS FOSSILS FROM THE CHESAPEAKE AND DELAWARE CANAL: A GUIDE FOR STUDENTS AND COLLECTORS By Edward M. Lauginiger Biology Teacher Academy Park High School Sharon Hill, Pennsylvania September 1988 Reprinted 1997 CONTENTS Page INTRODUCTION. • 1 ACKNOWLEDGMENTS 2 PREVIOUS STUDIES. 3 FOSSILS AND FOSSILIZATION 5 Requirements for Fossilization 6 Types of Fossilization 7 GEOLOGY •• 10 CLASSIFICATON OF FOSSILS. 12 Kingdom Monera • 13 Kindgom Protista 1 3 Kingdom Plantae. 1 4 Kingdom Animalia 15 Phylum Porifera 15 Phylum Cnidaria (Coelenterata). 16 Phylum Bryozoa. 16 Phylum Brachiopoda. 17 Phylum Mollusca • 18 Phylum Annelida •. 22 Phylum Arthropoda • 23 Phylum Echinodermata. 24 Phylum Chordata 24 COLLECTING LOCALITIES 28 FOSSIL CHECK LIST 30 BIBLIOGRAPHY. 33 PLATES. ••• 39 iii FIGURES Page Figure 1 • Index map of the Chesapeake and Delaware Canal Area. .. .. 2 Figure 2. Generalized stratigraphic column of the formations exposed at the C & D Canal. 11 Figure 3. Foraminifera 14 Figure 4. Porifera 16 Figure 5. Cnidaria 16 Figure 6. Bryozoa. 17 Figure 7. Brachiopoda. 18 Figure 8. Mollusca-Gastropoda. 19 Figure 9. Mollusca-Pelecypoda. 21 Figure 10. Mollusca-Cephalopoda 22 Figure 11. Annelida . 22 Figure 12. Arthropoda 23 Figure 13. Echinodermata. 25 Figure 1 4. Chordata . 27 Figure 1 5. Collecting localities at the Chesapeake and Delaware Canal . ... .. 29 v CRETACEOUS FOSSILS FROM THE CHESAPEAKE AND DELAWARE CANAL: A GUIDE FOR STUDENTS AND COLLECTORS Edward M. Lauginiger INTRODUCTION Fossil collectors have been attracted to Delaware since the late 1820s when the excavation of the Chesapeake and Delaware (C&D) Canal first exposed marine fossils of Cretaceous age (Fig. -
Cancer Pagurus) in Norway - Effect of Temperature and Other Environmental Parameters at High Latitudes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334051811 Life history and distribution of the edible crab (Cancer pagurus) in Norway - Effect of temperature and other environmental parameters at high latitudes Thesis · May 2019 CITATION READS 1 159 1 author: Snorre Bakke Norwegian University of Science and Technology 39 PUBLICATIONS 150 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CLIMA: Changes in fish distribution and species composition as a result of climatic changes in the East Greenland Ecosystem: implications for fisheries and management View project Availability of essential and toxic elements from marine resources View project All content following this page was uploaded by Snorre Bakke on 31 March 2020. The user has requested enhancement of the downloaded file. Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics Life history and distribution of the edible crab (Cancer pagurus) in Norway Effect of temperature and other environmental parameters at high latitudes — Snorre Bakke A dissertation for the degree of Philosophiae Doctor – May 2019 Life history and distribution of the edible crab (Cancer pagurus) in Norway Effect of temperature and other environmental parameters at high latitudes Snorre Bakke Thesis submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in Natural Science Ålesund/Tromsø, Norway May 2019 Graduating institute: Department -
First Evidence of the Cretaceous Decapod Crustacean Protocallianassa from Sweden
Downloaded from http://sp.lyellcollection.org/ by guest on October 2, 2021 First evidence of the Cretaceous decapod crustacean Protocallianassa from Sweden ELISABETH EINARSSON1, ARON PRASZKIER1 & VIVI VAJDA1,2* 1Department of Geology, Lund University, So¨lvegatan 12, SE-223 62 Lund, Sweden 2Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected]) Abstract: An assemblage of the burrowing ghost shrimp, Protocallianassa faujasi, is described, providing the first evidence of this decapod species from Sweden. The fossils occur in succes- sions of the informal earliest late Campanian Belemnellocamax balsvikensis zone at A˚ sen and the latest early Campanian B. mammillatus zone at Ivo¨ Klack, both in the Kristianstad Basin of NE Ska˚ne. Numerous, heavily calcified chelipeds were found within a restricted bed at A˚ sen that was rich in carbonate-cemented nodules. Based on the burrowing lifestyle of modern mud shrimps, we interpret these nodules as infilled burrow chambers. The low abundance of molluscs within the Protocallianassa beds is also consistent with analogous extant communities, indicating that a similar ecologically exclusive relationship ruled within the Late Cretaceous shallow- marine ecosystems. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. The Kristianstad Basin in the southernmost Swedish represented by sea-urchin spines (Erlstro¨m & Gabri- province of Ska˚ne hosts a richly fossiliferous suc- elson -
Synopsis of the Family Callianassidae, with Keys to Subfamilies, Genera and Species, and the Description of New Taxa (Crustacea: Decapoda: Thalassinidea)
ZV-326 (pp 03-152) 02-01-2007 14:37 Pagina 3 Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea) K. Sakai Sakai, K. Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea). Zool. Verh. Leiden 326, 30.vii.1999: 1-152, figs 1-33.— ISSN 0024-1652/ISBN 90-73239-72-9. K. Sakai, Shikoku University, 771-1192 Tokushima, Japan, e-mail: [email protected]. Key words: Crustacea; Decapoda; Thalassinidae; Callianassidae; synopsis. A synopsis of the family Callianassidae is presented. Defenitions are given of the subfamilies and genera. Keys to the sufamilies, genera, as well as seperate keys to the species occurring in certain bio- geographical areas are provided. At least the synonymy, type-locality, and distribution of the species are listed. The following new taxa are described: Calliapaguropinae subfamily nov., Podocallichirus genus nov., Callianassa whitei spec. nov., Callianassa gruneri spec. nov., Callianassa ngochoae spec. nov., Neocallichirus kempi spec. nov. and Calliax doerjesti spec. nov. Contents Introduction ............................................................................................................................. 3 Systematics .............................................................................................................................. 7 Subfamily Calliapaguropinae nov. .....................................................................................