Comparative Food Habits of Deer and Three Classes of Livestock Author(S): Craig A

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Food Habits of Deer and Three Classes of Livestock Author(S): Craig A Comparative Food Habits of Deer and Three Classes of Livestock Author(s): Craig A. McMahan Reviewed work(s): Source: The Journal of Wildlife Management, Vol. 28, No. 4 (Oct., 1964), pp. 798-808 Published by: Allen Press Stable URL: http://www.jstor.org/stable/3798797 . Accessed: 13/07/2012 12:15 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Allen Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife Management. http://www.jstor.org COMPARATIVEFOOD HABITSOF DEERAND THREECLASSES OF LIVESTOCK CRAIGA. McMAHAN,Texas Parksand Wildlife Department,Hunt Abstract: To observe forage competition between deer and livestock, the forage selections of a tame deer (Odocoileus virginianus), a goat, a sheep, and a cow were observed under four range conditions, using both stocked and unstocked experimental pastures, on the Kerr Wildlife Management Area in the Edwards Plateau region of Texas in 1959. The animals were trained in 2 months of preliminary testing. The technique employed consisted of recording the number of bites taken of each plant species by each animal during a 45-minute grazing period in each pasture each week for 1 year. Results indicated moderate to heavy competition for browse and mast between the deer and goat in all pastures during all seasons, and between the deer and all three classes of livestock in the winter. Browse and mast comprised over 50 percent of the deer's diet, except in the spring and summer, and over 50 percent of the goat's diet in all seasons. Following a decrease in available browse, sheep become competitive with deer for forbs. Forbs formed an average of 68 percent of the deer's diet and 65 percent of the sheep's diet in the ungrazed control pasture in the summer; the animals generally were grazing the same species. The added factors of bearing and nursing fawns, and growing antlers, contribute to the nutritional stresses on deer in the summer, the period when extensive die-offs of deer most frequently occur in the Edwards Plateau region. Competition for grass between deer and livestock probably is important only when grass is in a succulent stage in the spring and no other forage is available in quantity. Continuous grazing by animals tends to remove the most palatable species and concentrates competition on fewer, less palatable ones. Observationsfrom the numerous replications of feeding times and places allow the conclusion that this technique provides a reliable index to preferred foods and staple foods. In the Edwards Plateau region of Texas, tivity of deer and livestock in high densities most of the rangelands are grazed by two (Hahn 1945, Taylor and Hahn 1947). Pre- or more classes of livestock along with deer. vious studies of its vegetation in relation Research on the Kerr Wildlife Management to deer and livestock were reported by Area, near Hunt, Texas, indicates that deer Buechner (1944), Taylor and Beuchner when managed and harvested properly can (1943), and Whisenhunt (1949). On the provide economic returns comparable to Kerr Area, particularly the pastures in- those from domestic livestock. But a study volved in this study, the prominent vegetal of the economic feasibility of management expression is a savannah of live oak, in for livestock and deer in combination re- which Ashe juniper (Juniperus ashei) and vealed the need for more exact knowledge shin oak are conspicuous. of their competition for forage. To provide Part of the Kerr Wildlife Management such information, a study of the food habits Area contains 10, 96-acre deer-proof pas- of cattle, sheep, goats, and deer was initi- tures which are used for a long-term study ated in May, 1959, and concluded in May, of the influence of combined sheep, goat, 1960. and cattle grazing rates on deer production. The Kerr Wildlife Management Area is a Each species of animal obviously has a dif- research facility of the Texas Parks and ferent influence on the welfare of the others Wildlife Department located in Kerr and on the forage resource in general, but County in the eastern portion of the Ed- the experimental design had revealed only wards Plateau. This region, encompassing the gross influence of combinations of ani- some 26,000 square miles of central Texas, mals. probably is unique in its combined produc- Performances of deer in experimental pas- 798 FOOD HABITS OF DEER AND LIVESTOCK * McMahan 799 tures (Table 1) indicated clearly that live- Table 1. Average performances of deer maintained in ex- stock had a effect on perimental pastures with and without livestock from 1957 grazing pronounced through 1962. deer production. Only with little or no HERD competition from livestock did deer survive YEARLY LOSSES OF INCRE- and More exact PASTURES AND STARTING ADULTS MENT reproduce satisfactorily. STOCKING RATES* POPULA- (PERCENT) (PER- knowledge of the kinds and quantities of TIONt CENT) forage necessary for successful deer produc- 1 and 4 tion was needed. Heavy use by livestock 6 40 -43 2 and 5 Previous measurements of use on vegeta- Moderate use by tion (May 1959, Vallentine 1959) did not livestock 9 14 9 distinguish the effects of each kind of ani- 3 and 6 use livestock 8 14 6 mal. To obtain this information, we used Light by 7 tame animals whose activities could grazing Deer only, 8.0 acres be observed at close range with accuracy per deer 12 3 42 by what was called the animal bites method. 8 To our this method has been Deer only, 6.4 acres knowledge per deer 15 5 32 used previously only by Wallmo (1951). The author wishes to the * Each pasture contains 96 acres. acknowledge t Summation of all sex and age-classes of deer in technical assistance of T. A. Booker, for- paired pastures. merly with the Texas Parks and Wildlife Department, and the biometrical advice of This provided two groups of domestic Dr. O. C. Wallmo, the Arizona Game and livestock, A and B, with one animal of each Fish Department, and Dr. R. B. Davis, De- species in each group. In the testing sched- partment of Wildlife Management, Texas A. ule, each animal in Group A was grazed and M. University. In addition, gratitude during two different times on 1 day, and is expressed to Dr. Wallmo for his editing the following day Group B was grazed in of the manuscript. This is a contribution the same manner, during the same times of Texas Federal Aid Project W-76-R-4, and under the same conditions as Group Texas Parks and Wildlife Department, and A on the previous day. the U. S. Bureau of Sports Fisheries and In addition to training the animals, the Wildlife, cooperating. preliminary tests were intended to deter- mine: (1) the individual differences in PRELIMINARYTESTS preference for plant species within species Prior to initiating the study, the animals of livestock, (2) the influence of various to be used were trained for 2 months during degrees of supplementary feeding (moder- March and April, 1959. A mature male deer ate, light, or no feed) upon grazing behav- that had been raised as a pet was obtained ior, (3) the influence of time of day on and used because of his availability and forage preferences, (4) the length of graz- familiarity with the vegetative complex on ing period (1 hour, 45 minutes, or 30 the area. Two nanny goats, two ewes, and minutes) most suitable for providing the two cows were borrowed from the grazing desired body of data, and (5) the feasibility lessee on the area. Adult female livestock of using gentle animals in food habits re- were used because they represented the search. kind of animals most common on range- The preliminary tests were conducted on lands. a 22-acre area of uniform topography, soil 800 Journalof Wildlife Management,Vol. 28, No. 4, October 1964 type, and vegetative cover. The deer was correspond with the feeding normally given conditioned to respond to call, to following, range stock in different seasons. and to being led. The animals were trans- Several major conclusions pertinent to ported to and from the grazing area in the conduct of the study were drawn from either an open or closed (with sideboards) the preliminary tests: pickup truck, with a small livestock trailer. (1) Retaining the animals in pens and This mode of transportation did not disturb providing controlled supplementary feed the deer to any observable extent. was preferable to allowing them to graze A separate series of tests was also run in freely in a pasture between observation which the animals were allowed to run free periods. in a 90-acre trap while not being used in (2) Comparison of Groups A and B grazing observations. When a test was de- indicated that the two individuals of each sired, each animal was called to the truck, species among the sheep and goats made transported to the feeding area, and ob- forage choices that were significantly dif- served during either the early morning or ferent in statistical terms. This was not true late evening. Even though these periods of the two cows. The differences found are times of concentrated grazing by range were attributable to the greater docility of livestock and deer, the experimental ani- the animals in Group A which ate more, mals frequently would not graze at all or and more often, than did those in Group B.
Recommended publications
  • The Camel Farm Maintain an Enclosure Housing Goats in 15672 South Ave
    received a repeat citation for failing to The Camel Farm maintain an enclosure housing goats in 15672 South Ave. 1 E., Yuma, Arizona good repair. It had fencing with metal edges that were bent inward, sharp points protruding into the enclosure, and a gap The Camel Farm, operated by Terrill Al- large enough for an animal’s leg or head to Saihati, has failed to meet minimum become stuck. The facility was also cited for standards for the care of animals used in failing to maintain the perimeter fence in exhibition as established in the federal good repair and at a sufficient height of 8 Animal Welfare Act (AWA). The U.S. feet to function as a secondary containment Department of Agriculture (USDA) has system for the animals in the facility. A repeatedly cited The Camel Farm for section of the perimeter fence had a numerous infractions, including failing measured height of 5 feet, 4 inches. to provide animals (including sick, wounded, and lame ones) with adequate October 9, 2019: The USDA issued The veterinary care, failing to maintain Camel Farm a repeat citation for failing to enclosures in good repair, failing to have a method to remove pools of standing provide animals with drinking water, water around the water receptacles in failing to have an adequate number of enclosures housing a zebra, a donkey, employees to supervise contact between camels, and goats. The animals were the public and animals, failing to unable to drink from the receptacles without maintain clean and sanitary water standing in the water and mud.
    [Show full text]
  • Crows and Ravens Wildlife Notes
    12. Crows & Ravens Crows and ravens belong to the large family Corvidae, along with more than 200 other species including jays, nutcrackers and magpies. These less-than-melodious birds, you may be surprised to learn, are classified as songbirds. raven American Crow insects, grain, fruit, the eggs and young of other birds, Crows are some of the most conspicuous and best known organic garbage and just about anything that they can find of all birds. They are intelligent, wary and adapt well to or overpower. Crows also feed on the carcasses of winter – human activity. As with most other wildlife species, crows and road-killed animals. are considered to have “good” points and “bad” ones— value judgements made strictly by humans. They are found Crows have extremely keen senses of sight and hearing. in all 50 states and parts of Canada and Mexico. They are wary and usually post sentries while they feed. Sentry birds watch for danger, ready to alert the feeding birds with a sharp alarm caw. Once aloft, crows fly at 25 Biology to 30 mph. If a strong tail wind is present, they can hit 60 Also known as the common crow, an adult American mph. These skillful fliers have a large repertoire of moves crow weighs about 20 ounces. Its body length is 15 to 18 designed to throw off airborne predators. inches and its wings span up to three feet. Both males Crows are relatively gregarious. Throughout most of the and females are black from their beaks to the tips of their year, they flock in groups ranging from family units to tails.
    [Show full text]
  • Hunting Deer in California
    HUNTING DEER IN CALIFORNIA We hope this guide will help deer hunters by encouraging a greater understanding of the various subspecies of mule deer found in California and explaining effective hunting techniques for various situations and conditions encountered throughout the state during general and special deer seasons. Second Edition August 2002 STATE OF CALIFORNIA Arnold Schwarzenegger, Governor DEPARTMENT OF FISH AND GAME L. Ryan Broddrick, Director WILDLIFE PROGRAMS BRANCH David S. Zezulak, Ph.D., Chief Written by John Higley Technical Advisors: Don Koch; Eric Loft, Ph.D.; Terry M. Mansfield; Kenneth Mayer; Sonke Mastrup; Russell C. Mohr; David O. Smith; Thomas B. Stone Graphic Design and Layout: Lorna Bernard and Dana Lis Cover Photo: Steve Guill Funded by the Deer Herd Management Plan Implementation Program TABLE OF CON T EN T S INTRODUCT I ON ................................................................................................................................................5 CHAPTER 1: THE DEER OF CAL I FORN I A .........................................................................................................7 Columbian black-tailed deer ....................................................................................................................8 California mule deer ................................................................................................................................8 Rocky Mountain mule deer .....................................................................................................................9
    [Show full text]
  • Government Data Confirm That Grizzly Bears Have a Negligible Effect on U.S. Cattle and Sheep Industries
    Government data confirm that grizzly bears have a negligible effect on U.S. cattle and sheep industries In the United States, data show that grizzly bears (Ursus arctos) kill few cattle and sheep. Livestock predation data collected by various governmental bodies differ significantly, however. The most recent data published by the U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA)1 indicate losses many times greater than those collected by states and the U.S. Fish and Wildlife Service (FWS). For instance, the USDA claims grizzly bears killed 3,162 cattle in nine states (in 2015), while the FWS verified only 123 such losses in three states (in 2013). Montana’s Board of Livestock’s data show that between 2015 and 2018 cattle losses from grizzly bears numbered 61 or less annually. The USDA’s methodology involves collecting data from a few mostly unverified sources, which the USDA then extrapolated statewide without calculating standard errors or using models to test relationships among various mortality factors.2 This contravenes the scientific method and results in exaggerated livestock losses attributed to native carnivores and dogs. Unfortunately, this misinformation informs public policies that harm native carnivores, including countless legislative attacks on grizzly bears, wolves and the Endangered Species Act. The Humane Society of the United States analyzed the USDA’s embellished predation numbers. Their data show that farmers and ranchers lose nine times more cattle and sheep to health, weather, birthing and theft problems than to all predators combined. In the USDA reports, “predators” include mammalian carnivores (e.g., cougars, wolves and bears), avian carnivores (e.g., eagles and hawks) and domestic dogs.
    [Show full text]
  • Livestock Concerns with Feral Hogs
    Livestock Concerns with Feral Hogs Aaron Sumrall Newton Co. Extension Agent History of Feral Hogs • Introduce to New World by De Soto in 1539 as a food source. • Made it to Texas in 1680’s. • Population explosion beginning in 1930 thru now……Why? – Great Depression….hardship of the 30’s. – Imported for hunting opportunities. What is the Current Status? • Population estimates of >1 million. • Occupy 244 of 254 counties. • 2007- Caused $52 million in Ag only. • $200/Hog/Year in Damage. • 42 of 50 States. Feral Hog Biology • Life expectancy of 4-5 years. • Reproductively capable of 6 months if nutrition is available. – 1st litter can be weaned before 1st birthday of sow. • Gestation of 115 days. • Average littler size of 4-6 piglets. • What do you call a group of feral hogs? Feral Hog Biology….Continued • Sounders typically of 6-12 individuals can be >30. • Mature hogs from 110-300 lbs. • Come in 3 flavors. – Eurasian Wild Boar – Domesticated hogs released – Combination of the two Areas of Feral Hog Damage • Agricultural:$52 million in 2007. • Disease • Predation • Habitat Destruction • Accidents • Sensitive Areas……example Wetlands. • Residential • Recreational • $800 million animal in Ag/Environmental. Areas of Feral Hog Damage...Continued • Length of tie required for land recovery. • Loss of topsoil. • Destruction of sensitive habitat. • Predation of livestock and wildlife population. • Introduction of other invasive species. – Reduction or loss of native vegetation. • Reduced water quality. – Roadway damage, etc…. What are Legal Options? • Hunting • Trapping • Dogs • Snares • Ariel Gunning What else is Legal? • Are you required to hold a hunting license shoot/hunt hogs? –It Depends!!! Is it Legal to Raise Feral Hogs? • NO! It is not legal to posses or feed feral hogs without a permit.
    [Show full text]
  • A Comparative Study on the Physicochemical Parameters Of
    ienc Sc es al J ic o u Legesse et al., Chem Sci J 2017, 8:4 m r e n a h l DOI: 10.4172/2150-3494.1000171 C Chemical Sciences Journal ISSN: 2150-3494 Research Article Open Access A Comparative Study on the Physicochemical Parameters of Milk of Camel, Cow and Goat in Somali Regional State, Ethiopia Legesse A1*, Adamu F2, Alamirew K2 and Feyera T3 1Department of Chemistry, College of Natural and Computational Science, Ambo University, Ethiopia 2College of Natural and Computational Science, Jigjiga University, Ethiopia 3Department of Biomedical Sciences, College of Veterinary Medicine, Ethiopia *Corresponding author: Abi Legesse, Department of Chemistry, College of Natural and Computational Science, Ambo University, Ethiopia, Tel: +251 11 236 2006; E- mail: [email protected] Received date: September 25, 2017; Accepted date: October 03, 2017; Published date: October 06, 2017 Copyright: © 2017 Legesse A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This research was carried out to investigate key physicochemical parameters of milk samples collected from camel, cow and goat in Jigjiga district, Eastern Ethiopia. Sixty fresh milk samples were collected purposively from camels, cows and goats (twenty samples from each species) and analyzed. The results revealed that, cow milk had 6.30 ± 0.15 pH, 0.29 ± 0.04% titratable acidity, 14.6 ± 0.60% total solid, 0.75 ± 0.07% ash, 3.54 ± 0.12% protein, 5.54 ± 0.65% fat and 1.06 ± 0.03 specific gravity.
    [Show full text]
  • Anaplasma Phagocytophilum in the Highly Endangered Père David's
    Yang et al. Parasites & Vectors (2018) 11:25 DOI 10.1186/s13071-017-2599-1 LETTER TO THE EDITOR Open Access Anaplasma phagocytophilum in the highly endangered Père David’s deer Elaphurus davidianus Yi Yang1,3, Zhangping Yang2,3*, Patrick Kelly4, Jing Li1, Yijun Ren5 and Chengming Wang1,6* Abstract Eighteen of 43 (41.8%) Père David’s deer from Dafeng Elk National Natural Reserve, China, were positive for Anaplasma phagocytophilum based on real-time FRET-PCR and species-specific PCRs targeting the 16S rRNA or msp4. To our knowledge this is the first report of A. phagocytophilum in this endangered animal. Keywords: Anaplasma phagocytophilum, Père David’s deer, Elaphurus davidianus, China Letter to the Editor GmbH, Mannheim, Germany). The fluorescence reson- Père David’s deer (Elaphurus davidianus) are now found ance energy transfer (FRET) quantitative PCR targeting only in captivity although they occurred widely in north- the 16S rRNA gene of Anaplasma spp. [5] gave positive eastern and east-central China until they became extinct reactions for 18 deer (41.8%), including 8 females in the wild in the late nineteenth century [1]. In the (34.8%) and 10 males (50.0%). To investigate the species 1980s, 77 Père David’s deer were reintroduced back into of Anaplasma present, the positive samples were further China from Europe. Currently the estimated total popu- analyzed with species-specific primers targeting the 16S lation of Père David’s deer in the world is approximately rRNA gene of A. centrale, A. bovis, A. phagocytophilum 5000 animals, the majority living in England and China.
    [Show full text]
  • Heraldic Terms
    HERALDIC TERMS The following terms, and their definitions, are used in heraldry. Some terms and practices were used in period real-world heraldry only. Some terms and practices are used in modern real-world heraldry only. Other terms and practices are used in SCA heraldry only. Most are used in both real-world and SCA heraldry. All are presented here as an aid to heraldic research and education. A LA CUISSE, A LA QUISE - at the thigh ABAISED, ABAISSÉ, ABASED - a charge or element depicted lower than its normal position ABATEMENTS - marks of disgrace placed on the shield of an offender of the law. There are extreme few records of such being employed, and then only noted in rolls. (As who would display their device if it had an abatement on it?) ABISME - a minor charge in the center of the shield drawn smaller than usual ABOUTÉ - end to end ABOVE - an ambiguous term which should be avoided in blazon. Generally, two charges one of which is above the other on the field can be blazoned better as "in pale an X and a Y" or "an A and in chief a B". See atop, ensigned. ABYSS - a minor charge in the center of the shield drawn smaller than usual ACCOLLÉ - (1) two shields side-by-side, sometimes united by their bottom tips overlapping or being connected to each other by their sides; (2) an animal with a crown, collar or other item around its neck; (3) keys, weapons or other implements placed saltirewise behind the shield in a heraldic display.
    [Show full text]
  • The Impact of Nutritional Factors on the Development of Phosphatic Uroliths Using Meat Goats As a Model for Captive Giraffes
    THE IMPACT OF NUTRITIONAL FACTORS ON THE DEVELOPMENT OF PHOSPHATIC UROLITHS USING MEAT GOATS AS A MODEL FOR CAPTIVE GIRAFFES Kathleen Sullivan, MS,1* Eric van Heugten, PhD,1 Kimberly Ange-van Heugten, MS,1 Matthew H. Poore, PhD,1 Sharon Freeman, MS,1 Barbara Wolfe, DVM, PhD, DACZM2 1 Department of Animal Science, North Carolina State University, Raleigh, NC 27695; 2The Wilds, Cumberland, OH 43732 Abstract Obstructive urolithiasis is a documented problem in domestic ruminants, such as the meat goat, and exotic herbivores, such as captive giraffe. These two species develop phosphorus based uroliths and are considered browsing ruminants. Due to the logistical challenges of performing studies with captive giraffe, a metabolic trial was conducted using meat goats as a model. The intent of this study was to determine the impact of type of diet (ADF-16 or Wild Herbivore complete pelleted feed) and complete pelleted feed to hay ratios (20 or 80% hay) on the development of urolithiasis in meat goats, in the context of captive giraffe feeding practices. The diet in which ADF-16 pellets were fed in combination with 20% hay had the lowest levels of fiber, the lowest calcium (Ca) to phosphorus (P) ratio, and the highest level of P compared to the other 3 diet treatments. From our results, we concluded that feeding the ADF-16 pellets with hay as 20% of the diet, produced a trend of high urinary P over the four week experimental period. There was also a tendency for a higher crystal count in the urine when hay was 20% of the diet.
    [Show full text]
  • Carpals and Tarsals of Mule Deer, Black Bear and Human: an Osteology Guide for the Archaeologist
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2009 Carpals and tarsals of mule deer, black bear and human: an osteology guide for the archaeologist Tamela S. Smart Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Anthropology Commons Recommended Citation Smart, Tamela S., "Carpals and tarsals of mule deer, black bear and human: an osteology guide for the archaeologist" (2009). WWU Graduate School Collection. 19. https://cedar.wwu.edu/wwuet/19 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWu. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books.
    [Show full text]
  • Nutritional Properties of Camelids and Equids Fresh and Fermented Milk
    Review Nutritional Properties of Camelids and Equids Fresh and Fermented Milk Paolo Polidori 1,* , Natalina Cammertoni 2, Giuseppe Santini 2, Yulia Klimanova 2 , Jing-Jing Zhang 2 and Silvia Vincenzetti 2 1 School of Pharmacy, University of Camerino, 62032 Camerino, Italy 2 School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; [email protected] (N.C.); [email protected] (G.S.); [email protected] (Y.K.); [email protected] (J.-J.Z.); [email protected] (S.V.) * Correspondence: [email protected]; Tel.: +39-0737-403426 Abstract: Milk is considered a complete food because all of the nutrients important to fulfill a newborn’s daily requirements are present, including vitamins and minerals, ensuring the correct growth rate. A large amount of global milk production is represented by cow, goat, and sheep milks; these species produce about 87% of the milk available all over the world. However, the milk obtained by minor dairy animal species is a basic food and an important family business in several parts of the world. Milk nutritional properties from a wide range of minor dairy animal species have not been totally determined. Hot temperatures and the lack of water and feed in some arid and semi-arid areas negatively affect dairy cows; in these countries, milk supply for local nomadic populations is provided by camels and dromedaries. The nutritional quality in the milk obtained from South American camelids has still not been completely investigated, the possibility of creating an economic Citation: Polidori, P.; Cammertoni, resource for the people living in the Andean highlands must be evaluated.
    [Show full text]
  • The Romance of Clan Crests and Mottoes
    For Private Circulation The Romance of Clan Crests and Mottoes BY A. POLSON, F.S.A., Scot. H./v . 4/^. )12f Ht 4^ J ^X^ ^ m^-t JfiUum,— The Romance of Clan Crests and Mottoes. This is not a paper on Heraldry, but only a small collec- tion of legends regarding the incidents which are said to account for the crests and mottoes of some of the Highland clans. It is hoped that the recital of these may induce some of the members of the clans not mentioned here to tell any story they may have heard regarding their crests, so that fellow clansmen may take a deeper interest in all that pertains to the crest which many of them so proudly wear. The innate vanity which has prompted men of all races and ages to don ornaments and decorations must, among other things, be held responsible for the armorial bearings which have been, and are, worn by individuals, families, and communities, all of whom seem peculiarly sensitive as to the right of any other to impinge on their privilege of wearing the peculiar design chosen by themselves or an ancestor. Heraldry is not itself an old science, but the desire for some distinguishing ornament accounts, among savages, for the painted designs their bodies and on their shields and on ; men bearing similar designs were, and are, regarded as brethren. There is ample evidence of the antiquity of these emblems. One wonders whether Jacob in blessing his sons had in mind the emblems of the tribes when he said: " Judah is a lion's whelp.
    [Show full text]