CHEM 203 Summary of Topics to Be Covered in the Course INDEX A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of Electrophilic Aromatic Substitution: a “Complex Approach” PCCP
Volume 23 Number 9 7 March 2021 Pages 5033–5682 PCCP Physical Chemistry Chemical Physics rsc.li/pccp ISSN 1463-9076 PERSPECTIVE Janez Cerkovnik et al . An analysis of electrophilic aromatic substitution: a “complex approach” PCCP View Article Online PERSPECTIVE View Journal | View Issue An analysis of electrophilic aromatic substitution: a ‘‘complex approach’’† Cite this: Phys. Chem. Chem. Phys., a a b 2021, 23, 5051 Nikola Stamenkovic´, Natasˇa Poklar Ulrih and Janez Cerkovnik * Electrophilic aromatic substitution (EAS) is one of the most widely researched transforms in synthetic organic chemistry. Numerous studies have been carried out to provide an understanding of the nature of its reactivity pattern. There is now a need for a concise and general, but detailed and up-to-date, overview. The basic principles behind EAS are essential to our understanding of what the mechanisms underlying EAS are. To date, textbook overviews of EAS have provided little information about the Received 5th October 2020, mechanistic pathways and chemical species involved. In this review, the aim is to gather and present the Accepted 21st December 2020 up-to-date information relating to reactivity in EAS, with the implication that some of the key concepts DOI: 10.1039/d0cp05245k will be discussed in a scientifically concise manner. In addition, the information presented herein suggests certain new possibilities to advance EAS theory, with particular emphasis on the role of modern Creative Commons Attribution-NonCommercial 3.0 Unported Licence. rsc.li/pccp -
Activity 33. Hydrohalogenation & Hydration of Alkynes
Chem 201, Fall 2010 Activity 33, M Nov 22 Activity 33. Hydrohalogenation & Hydration of Alkynes Alkynes undergo many of the same addition reactions that alkenes do, including additions that require carbocation intermediates. Different energy and geometry changes may be required for additions to an alkyne and an alkene so some surprising outcomes may occur with alkynes. Model 1. Addition of HX Hydrogen halides (HCl, HBr, HI) add to alkynes to make vinyl halides . A carbocation mechanism is followed when the reaction is performed in the dark in a peroxide-free solvent. This addition obeys Markovnikov’s rule. A free-radical-chain mechanism is followed when HBr addition is initiated by organic peroxides. This addition gives an anti-Markonikov product. Critical Thinking Questions 1. Draw the carbocations indicated by the two bouncy curved arrows (below). Based on the observation that the carbocation mechanism yields a Markovnikov product, circle the more stable carbocation. 2. (CI) Draw the free radicals indicated by the two competing pathways (below). Based on the observation that the free-radical mechanism yields an anti-Markovnikov product, circle the more stable free radical. 3. The cations and radicals in CTQ #1 and #2 are called vinyl cations and vinyl radicals , respectively. Based on the regioselectivities reported in Model 1, what effect do alkyl substituents at the charged/radical carbon have on the energies of these species? Is this consistent with, or opposed to, their effect on R 3C+ and R 3C• species? 4. The geometry of a vinyl cation can be anticipated using VSEPR. Count electron domains in the cation below and predict all of the HCC bond angles. -
A Palladium-Catalyzed Approach to Allenic Aromatic Ethers and First Total
Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue A palladium-catalyzed approach to allenic aromatic ethers and first total synthesis of terricollene A† Cite this: Chem. Sci.,2021,12,9347 a b b b a a a All publication charges for this article Chaofan Huang, Fuchun Shi, Yifan Cui,‡ Can Li,‡ Jie Lin,‡ Qi Liu,‡ Anni Qin,‡ have been paid for by the Royal Society Huanan Wang,‡a Guolin Wu,‡a Penglin Wu,‡a Junzhe Xiao, ‡b Haibo Xu,‡b of Chemistry Yuan Yuan,‡a Yizhan Zhai,‡b Wei-Feng Zheng,‡a Yangguangyan Zheng, ‡a Biao Yu*b and Shengming Ma *ab A palladium-catalyzed C–O bond formation reaction between phenols and allenylic carbonates to give 2,3- allenic aromatic ethers with decent to excellent yields under mild reaction conditions has been described. A Received 7th April 2021 variety of synthetically useful functional groups are tolerated and the synthetic utility of this method has Accepted 4th June 2021 been demonstrated through a series of transformations of the allene moiety. By applying this reaction as DOI: 10.1039/d1sc01896e the key step, the total syntheses of naturally occurring allenic aromatic ethers, eucalyptene and rsc.li/chemical-science terricollene A (first synthesis; 4.5 g gram scale), have been accomplished. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction Results and discussion Aromatic ethers are prevalent and prominent in a variety of In contrast to the well-established metal-catalyzed coupling natural products, pharmaceuticals, and agrochemicals.1 Tradi- reactions between aryl halides and phenols or aliphatic alcohols tional methods for the preparation of aromatic ethers include (Scheme 1b),9 metal-catalyzed coupling reactions of aryl halides the Williamson ether synthesis,2 direct nucleophilic substitu- tion reactions,3 Mitsunobu reaction,4 Ullman-type couplings of alkoxides with aryl halides,5 etc. -
Aldehydes and Ketones
Organic Lecture Series Aldehydes And Ketones Chap 16 111 Organic Lecture Series IUPAC names • the parent alkane is the longest chain that contains the carbonyl group • for ketones, change the suffix -e to -one • number the chain to give C=O the smaller number • the IUPAC retains the common names acetone, acetophenone, and benzophenone O O O O Propanone Acetophenone Benzophenone 1-Phenyl-1-pentanone (Acetone) Commit to memory 222 Organic Lecture Series Common Names – for an aldehyde , the common name is derived from the common name of the corresponding carboxylic acid O O O O HCH HCOH CH3 CH CH3 COH Formaldehyde Formic acid Acetaldehyde Acetic acid – for a ketone , name the two alkyl or aryl groups bonded to the carbonyl carbon and add the word ketone O O O Ethyl isopropyl ketone Diethyl ketone Dicyclohexyl ketone 333 Organic Lecture Series Drawing Mechanisms • Use double-barbed arrows to indicate the flow of pairs of e - • Draw the arrow from higher e - density to lower e - density i.e. from the nucleophile to the electrophile • Removing e - density from an atom will create a formal + charge • Adding e - density to an atom will create a formal - charge • Proton transfer is fast (kinetics) and usually reversible 444 Organic Lecture Series Reaction Themes One of the most common reaction themes of a carbonyl group is addition of a nucleophile to form a tetrahedral carbonyl addition compound (intermediate). - R O Nu - + C O Nu C R R R Tetrahedral carbonyl addition compound 555 Reaction Themes Organic Lecture Series A second common theme is -
Kinetics and Products Distribution of Selective Catalytic Hydration of Ethylene and Propylene Oxides in Concentrated Aqueous Solutions
Organic Process Research & Development 2002, 6, 660-664 Kinetics and Products Distribution of Selective Catalytic Hydration of Ethylene and Propylene Oxides in Concentrated Aqueous Solutions I. A. Kozlovsky, R. A. Kozlovsky,* A. V. Koustov, M. G. Makarov, J. P. Suchkov, and V. F. Shvets D.I.Mendeleev University of Chemical Technology of Russia, Chair of Basic Organic and Petrochemical Synthesis, 9 Miusskaya Square, Moscow 125047, Russia Abstract: and metalate anions.I" The kinetics and reaction mechanism The kinetics of selective hydration of ethylene- and propylene of the hydration of a-oxides using homogeneous catalysis oxides in concentrated aqueous solutions is studied during by salts have been explicitly studied.3,IO,1l The kinetic data homogeneous catalysis by sodium bicarbonate. The mathemati obtained have shown that at a concentration of some salts cal model of the process with determined parameters adequately of about 0.5 molJL the distribution factor b = klko is reduced describing the rate of the reaction and products distribution is lO-fold more (to 0.1-0.2). This enables the production of developed. monoglycol with high selectivity at water/oxide molar ratios close to 1. We have used hereinafter homogeneous nucleo philic catalysts with the above-mentioned properties for the Introduction creation of industrial heterogeneous catalysts of a selective The reaction of ethylene- and propylene oxides hydration hydration of ethylene- and propylene oxides by means of is an industrial way of obtaining of glycols, in particular an immobilization of anions of salts on heterogeneous ethylene glycol-one of the most-produced large-scale carriers. 12-17 The largest ethylene glycol producers Shell, 18-24 products of industrial organic synthesis, with the world (4) Masuda, T. -
Nucleophilic Aromatic Substitution on Aryl-Amido Ligands Promoted by Oxidizing Osmium(IV) Centers
Inorg. Chem. 2004, 43, 5804−5815 Nucleophilic Aromatic Substitution on Aryl-Amido Ligands Promoted by Oxidizing Osmium(IV) Centers Jake D. Soper, Erik Saganic, David Weinberg, David A. Hrovat, Jason B. Benedict,† Werner Kaminsky,† and James M. Mayer* Department of Chemistry, Campus Box 351700, UniVersity of Washington, Seattle, Washington 98195-1700 Received January 30, 2004 IV Addition of amine nucleophiles to acetonitrile solutions of the Os anilido complex TpOs(NHPh)Cl2 (1) [Tp ) hydrotris(1-pyrazolyl)borate] gives products with derivatized anilido ligands, i.e., TpOs[NH-p-C6H4(N(CH2)5)]Cl2 (2) from piperidine and TpOs[NH-p-C6H4N(CH2)4]Cl2 (3) from pyrrolidine. These materials are formed in ∼30% yield III under anaerobic conditions, together with ∼60% yields of the Os aniline complex TpOs(NH2Ph)Cl2 (5). Formation of the para-substituted materials 2 or 3 from 1 involves oxidative removal of two hydrogen atoms (two H+ and two - e ). The oxidation can be accomplished by 1, forming 5,orbyO2. Related reactions have been observed with other amines and with the 2-naphthylamido derivative, which gives an ortho-substituted product. Kinetic studies indicate an addition−elimination mechanism involving initial attack of the amine nucleophile on the anilido ligand. These are unusual examples of nucleophilic aromatic substitution of hydrogen. Ab initio calculations on 1 show that the LUMO has significant density at the ortho and para positions of the anilido ligand, resembling the LUMO of nitrobenzene. By analogy with nucleophilic aromatic substitution, 2 is quantitatively formed from piperidine and IV the p-chloroanilide TpOs(NH-p-C6H4Cl)Cl2 (7). -
Vapor Phase Hydration of Ethylene Catalyzed by Solid Acids*
47 Vapor Phase Hydration of Ethylene Catalyzed by Solid Acids* by Kozo Tanabe** and Masahiro Nitta** Summary: The hydration of ethyleneover various solid acids such as metal sulfates, phos- phates, oxides, solid phosphoricacid and cation exchangedzeolites was investigatedin a closed circulation system at 160~300℃. Ferric and aluminum sulfates and zeolites Y showed high catalytic activity in comparison with solid phosphoricacid, SiO2-Al2O3,zeolites A and all other catalysts. The selectivityfor ethanolformation was extremelyhigh in metal sulfates and zeolites A, but low in SiO2-Al2O3 and zeolites Y. The order of activities of metal sulfates was Fe2(SO4)3>Al2(SO4)3>Ni- SO4> Cr2(SO4)3>CuSO4>MnSO4>CaSO4. The catalysts those acid strength in their dried state was as strong as -8.2<Ho≦-3 were found to be active and selective for ethanol for- mation. The activitiesof cation exchangedzeolites A which varied in order of Mg-A>Cd-A> Zn-A>Ca-A>Ag-A>Sr-A>La-A~Ce-A were shown to correlate with the electronegativities of exchangedcations and the adsorptionheats of ethylene. The rate of ethanolformation increasedas the mole ratio of H2O/C2H4 decreased. The experimenton the reaction of ethylenewith heavy water showed that deuterium did not transfer into ethyleneat all. It was concludedby analyzing the kinetic data that theformation of an ad- sorbedethyl carbonium ion from an adsorbedethylene and a proton on acid sites was the rate-deter- miningstep of the hydration. 1 Introduction 2 Experimental The direct synthesis of alcohol from ethylene 2.1 Catalysts -
Organic Chemistry/Fourth Edition: E-Text
CHAPTER 17 ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP O X ldehydes and ketones contain an acyl group RC± bonded either to hydrogen or Ato another carbon. O O O X X X HCH RCH RCRЈ Formaldehyde Aldehyde Ketone Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds, its central theme is a fundamental reaction type, nucleophilic addition to carbonyl groups. The principles of nucleophilic addition to alde- hydes and ketones developed here will be seen to have broad applicability in later chap- ters when transformations of various derivatives of carboxylic acids are discussed. 17.1 NOMENCLATURE O X The longest continuous chain that contains the ±CH group provides the base name for aldehydes. The -e ending of the corresponding alkane name is replaced by -al, and sub- stituents are specified in the usual way. It is not necessary to specify the location of O X the ±CH group in the name, since the chain must be numbered by starting with this group as C-1. The suffix -dial is added to the appropriate alkane name when the com- pound contains two aldehyde functions.* * The -e ending of an alkane name is dropped before a suffix beginning with a vowel (-al) and retained be- fore one beginning with a consonant (-dial). 654 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 17.1 Nomenclature 655 CH3 O O O O CH3CCH2CH2CH CH2 CHCH2CH2CH2CH HCCHCH CH3 4,4-Dimethylpentanal 5-Hexenal 2-Phenylpropanedial When a formyl group (±CHœO) is attached to a ring, the ring name is followed by the suffix -carbaldehyde. -
Cu(II) Catalyzed Unsymmetrical Di-Oxidation of Gem- Difluoroalkenes to Generate Α,Α-Difluorinated-Α-Phenoxyketones, an Unstudied Substructure
Cu(II) Catalyzed Unsymmetrical Di-oxidation of gem- Difluoroalkenes to Generate α,α-Difluorinated-α-Phenoxyketones, an Unstudied Substructure Suvajit Koley, [a] Kaylee T. Cayton, [b] Gisela A. González-Montiel,[b] M. Ramu Yadav,[c] Douglas L. Orsi,[d] Paul Ha-Yeon Cheong,*[b] and Ryan A. Altman*[a] [a] Dr. S. Koley, Dr. R. A. Altman Department of Medicinal Chemistry and Molecular Pharmacology; Department of Chemistry Purdue University West Lafayette, IN 47907 (USA) E-mail: [email protected] [b] K. T. Cayton, G. A. González-Montiel, Dr. P. H.-Y. Cheong Department of Chemistry Oregon State University 153 Gilbert Hall, Corvallis, OR 97331 (USA) [c] Dr. M. R. Yadav Department of Chemistry Indian Institute of Technology Delhi MS-723, Hauz Khas, New Delhi-110016 (India) [d] Dr. D. L. Orsi Broad Institute of Harvard and MIT Cambridge, MA 02142 (USA) Supporting information for this article is given via a link at the end of the document. Abstract: A Cu-based catalyst system convergently couples gem- conformers versus the parent alkyl-aryl ethers that preferentially difluoroalkenes with phenols under aerobic conditions to deliver α,α- reside in the plane of the arene,[23] and versus trifluoromethyl-aryl difluorinated-α-phenoxy ketones, an unstudied hybrid fluorinated ethers that reside orthogonally to the plane of the arene.[24] functional group. Composed of α,α-difluorinated ketone and α,α- Interestingly, despite the individual significance of the α,α- difluorinated ether moieties, these have only once been previously difluoroketone and α,α-difluoroalkyl ethers components, the reported as a synthetic intermediate en route to pharmacologically hybrid α,α-difluorinated-α-phenoxy-ketone functional group has active compounds. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
Reactions of Alkenes and Alkynes
05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each. -
Intermolecular Forces
Intermolecular Forces The intermolecular forces between molecules are important in the properties of all solid and liquid materials. They are key to reactions that take place in biological molecules. Proteins form their secondary and tertiary structures through hydrogen-bonding and London forces. DNA forms because of hydrogen bonding between base pairs. Enzymes function when molecules interact with the protein active site in these biological catalysts. Outline • Types of Intermolecular Forces • Entropy Considerations • Intermolecular Forces and DNA • Homework Types of Intermolecular Forces Solutions consist of a solvent and solute. There are gas, liquid, and solid solutions but in this unit we are concerned with liquids. The solvent then is a liquid phase molecular material that makes up most of the solution. Water is a good example of a solvent. The solute is a smaller quantity of anything that is dissolved in the solvent. It can be a gas (O2 in water), a liquid (water dissolved in ethanol), or a solid (NaCl dissolved in water). In any solution, the molecules or ions of the solute are randomly distributed among the molecules of the solvent. What are the intermolecular forces? They are listed in the table below along with covalent and ionic bonding for comparison. Notice that they have different dependence on the distance between the attracting particles, r. Materials dissolve in a solution when there are strong intermolecular forces between the solute and the solvent. London Dispersion Forces We could discount intermolecular interactions between gas-phase molecules because these molecules are mostly far apart and moving rapidly relative to each other. In the liquid phases, all molecules interact with one another.