Aldehydes and Ketones

Total Page:16

File Type:pdf, Size:1020Kb

Aldehydes and Ketones Organic Lecture Series Aldehydes And Ketones Chap 16 111 Organic Lecture Series IUPAC names • the parent alkane is the longest chain that contains the carbonyl group • for ketones, change the suffix -e to -one • number the chain to give C=O the smaller number • the IUPAC retains the common names acetone, acetophenone, and benzophenone O O O O Propanone Acetophenone Benzophenone 1-Phenyl-1-pentanone (Acetone) Commit to memory 222 Organic Lecture Series Common Names – for an aldehyde , the common name is derived from the common name of the corresponding carboxylic acid O O O O HCH HCOH CH3 CH CH3 COH Formaldehyde Formic acid Acetaldehyde Acetic acid – for a ketone , name the two alkyl or aryl groups bonded to the carbonyl carbon and add the word ketone O O O Ethyl isopropyl ketone Diethyl ketone Dicyclohexyl ketone 333 Organic Lecture Series Drawing Mechanisms • Use double-barbed arrows to indicate the flow of pairs of e - • Draw the arrow from higher e - density to lower e - density i.e. from the nucleophile to the electrophile • Removing e - density from an atom will create a formal + charge • Adding e - density to an atom will create a formal - charge • Proton transfer is fast (kinetics) and usually reversible 444 Organic Lecture Series Reaction Themes One of the most common reaction themes of a carbonyl group is addition of a nucleophile to form a tetrahedral carbonyl addition compound (intermediate). - R O Nu - + C O Nu C R R R Tetrahedral carbonyl addition compound 555 Reaction Themes Organic Lecture Series A second common theme is reaction with a proton or other Lewis acid to form a resonance- stabilized cation-- – protonation increases the electron deficiency of the carbonyl carbon and makes it more reactive toward nucleophiles R fast R + R - + CO + H-B B + CO H CO H R R R R O-H - + slow B + H-Nu + CO H Nu C + H-B R R R Tetrahedral carbonyl addition compound 666 Organic Lecture Series – often the tetrahedral product of addition to a carbonyl is a new chiral center – if none of the starting materials is chiral and the reaction takes place in an achiral environment, then enantiomers will be formed as a racemic mixture Approach from the top face Nu Nu O OH R R R' + R' - R H3 O Nu CO + + R' R R R' R' O OH Nu Nu Approach from A new chiral A racemic mixture the bottom face center is created 777 Organic Lecture Series Addition of C Nucleophiles Addition of carbon nucleophiles is one of the most important types of nucleophilic additions to a C=O group – a new carbon-carbon bond is formed in the process – Focus on addition of these carbon nucleophiles: RMgX RLi RC C - - C N A Grignard An organolithium An alkyne Cyanide ion reagent reagent anion 888 Organic Lecture Series Grignard Reagents – addition of a Grignard reagent to + formaldehyde followed by H 3O gives a 1° alcohol O ether CH3 CH2 -MgBr + H-C-H Formaldehyde - + O [ MgBr] OH HCl 2+ CH3 CH2 -CH2 CH3 CH2 -CH2 + Mg H2 O A magnesium 1-Propanol alkoxide (a 1° alcohol) 999 Organic Lecture Series Grignard Reagents – addition to any other RCHO gives a 2°alcohol MgBr O ether + H Acetaldehyde (an aldehyde) - + O [ MgBr] OH HCl + Mg2+ H2 O A magnesium 1-Cyclohexylethanol alkoxide (a 2° alcohol; (racemic) 101010 Organic Lecture Series Grignard Reagents – addition to a ketone gives a 3°alcohol O ether Ph-MgBr + Phenyl- Acetone magnesium (a ketone) bromide - + OH O [ MgBr] HCl + Mg2+ Ph H2 O Ph A magnesium 2-Phenyl-2-propanol alkoxide (a 3° alcohol) 111111 Organic Lecture Series Problem: 2-phenyl-2-butanol can be synthesized by three different combinations of a Grignard reagent and a ketone. Show each combination. OH C-CH2 CH3 CH3 121212 Organic Lecture Series O A Simple Retrosynthetic Analysis CH3 OH O CH3 CH3 O CH3 131313 Organic Lecture Series 141414 Organic Lecture Series Addition Reactions to Carbonyl Compounds Note: Water can also be added to ketones & aldehydes. 151515 Organic Lecture Series Organolithium Reagents Organolithium compounds are generally more reactive in C=O addition reactions than RMgX, and typically give higher yields O- Li+ O OH Li + HCl H2 O Phenyl- 3,3-Dimethyl-2- A lithium alkoxide 3,3-Dimethyl-2-phenyl- lithium butanone (racemic) 2-butanol (racemic) 161616 Organic Lecture Series Salts of Terminal Alkynes • Addition of an alkyne anion followed + by H3O gives an α-acetylenic alcohol • Note: this is a 2-C homologation O HC C O - Na+ HC C OH - HC C: Na+ + HCl H2 O Sodium Cyclohexanone A sodium 1-Ethynyl- acetylide alkoxide cyclohexanol Homologation is a term used for extending a carbon chain 171717 Organic Lecture Series Oxidation of Terminal Alkynes O HO CCH3 H2 O ααα H2 SO4, HgSO4 HO C CH An ααα-hydroxyketone O ααα HO CH2CH 1. (sia) BH 2 βββ 2. H2O2, NaOH A βββ-hydroxyaldehyde (these reactions are from O-chem I) 181818 Pg 285: use of (sia) 2BH Organic Lecture Series Addition of HCN • HCN adds to the C=O group of an aldehyde or ketone to give a cyanohydrin • Cyanohydrin: a molecule containing an - OH group and a -CN group bonded to the same carbon O HO C N + HCN C C H3C H H3C H Acetaldehyde 2-Hydroxypropanenitrile (Acetaldehyde cyanohydrin) 191919 Organic Lecture Series Addition of HCN • Mechanism of cyanohydrin formation – Step 1: nucleophilic addition of cyanide to the carbonyl carbon - H3 C H3 C O -• • C OC+ C N H3 C H3 C C N – Step 2: proton transfer from HCN gives the cyanohydrin and regenerates cyanide ion - H C O-H H3 C O 3 -• • C + HCCN + CN H C C N H3 C CN 3 pKa=9.3 202020 Organic Lecture Series Cyanohydrins – catalytic reduction of the cyano group gives a 1°amine OH OH Ni CHC N+ 2H2 CHCH2 NH2 βββ α Benzaldehyde 2-Amino-1-phenylethanol cyanohydrin (racemic) (racemic) βββ−β−−−Phenethylamines 212121 Organic Lecture Series Biosynthesis of Dopamine L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine 222222 Organic Lecture Series βββ−β−−−Phenethylamines (Natural) NH2 HO OH OH NH2 Dopamine HO OH Norepinephrine 232323 Organic Lecture Series βββ−β−−−Phenethylamines (synthetic) H N CH3 CH3 N-methylamphetamine NH2 CH3 amphetamine 242424 Organic Lecture Series Overall Synthetic Transformation of Wittig Reagents & Its Variations R R' O C Ketone Alkenes Can Be or Cyclic Olefins 252525 Organic Lecture Series Wittig Reaction The Wittig reaction is a very versatile synthetic method for the synthesis of alkenes (olefins) from aldehydes and ketones + - O + Ph3 P-CH2 CH2 + Ph3 P=O Cyclohexanone A phosphonium Methylene- Triphenyl- ylide cyclohexane phosphine oxide Ylides are reagents (or reactive intermediates) which have adjacent charges: Ph3P CH2 Ph3P CH2 262626 Phosphonium ylides Organic Lecture Series Phosphonium ylides are formed in two steps: Step 1: nucleophilic displacement of iodine by triphenylphosphine + SN 2 Ph3 P+ CH3 -I Ph3 P-CH3 I Triphenylphosphine Methyltriphenylphosphonium iodide (an alkyltriphenylphosphine salt) Step 2: treatment of the phosphonium salt with a very strong base, most commonly BuLi, NaH, or NaNH 2 + - + - CH3 CH2 CH2 CH2 Li + H-CH2 -PPh3 I Butyllithium + CH CH CH CH + - 3 2 2 3 CH2 -PPh3 + LiI Butane A phosphonium ylide Not exam material 272727 Organic Lecture Series Wittig Reaction Phosphonium ylides react with the C=O group of an aldehyde or ketone to give an alkene Step 1: nucleophilic addition of the ylide to the electrophilic carbonyl carbon O CR2 - :O CR2 O CR2 + - + Ph3 P CH2 Ph3 P CH2 Ph3 P CH2 A betaine An oxaphosphetane Step 2: decomposition of the oxaphosphatane O CR2 Ph P=O + 3 R2 C=CH2 Ph3 P CH2 Triphenylphosphine An alkene 28 oxide 2828 Organic Lecture Series Wittig Reaction O + + Ph P=O Ph3 P 3 Acetone 2-Methyl-2-heptene O + + + Ph P=O Ph Ph3 P Ph Ph 3 H (Z)-1-Phenyl-2- (E)-1-Phenyl-2- Phenyl- butene butene acetaldehyde (87%) (13%) Resonance stabilized Wittig reagent: H O O Ph + Ph3 P Ph O OEt OEt + Ph3 P=O Phenyl- Ethyl (E)-4-phenyl-2-butenoate acetaldehyde (only the E isomer is formed) 292929 Organic Lecture Series Addition Reactions to Carbonyl Compounds Note: Water can be added to ketones & aldehydes. 303030 Organic Lecture Series Addition of H 2O to Carbonyls Addition of water ( hydration ) to the carbonyl group of an aldehyde or ketone gives a geminal diol, commonly referred to a gem- diol – gem-diols are also referred to as hydrates acid or base OH CO + H2 O C OH Carbonyl group A hydrate of an aldehyde (a gem-diol) or ketone 313131 Organic Lecture Series Addition of H 2O to Carbonyls – when formaldehyde ( g) is dissolved in water at 20°C, the carbonyl group is more than 99% hydrated H H OH O + H O 2 OH H H Formaldehyde Formaldehyde hydrate (>99%) – the equilibrium concentration of a hydrated ketone is considerably smaller OH O + H O 2 OH Acetone 2,2-Propanediol (99.9%) (0.1%) 323232 Organic Lecture Series Addition of Alcohols to Carbonyls • Addition of one molecule of alcohol to the C=O group of an aldehyde or ketone gives a hemiacetal • Hemiacetal: a molecule containing an - OH and an -OR or -OAr bonded to the same carbon acid or base OH O + H-OR OR A hemiacetal 333333 Organic Lecture Series Formation of a hemiacetal-- base catalyzed – Step 1: proton transfer from HOR gives an alkoxide fast and reversible Na + -OCH B - + H OR B H + - OR 3 – Step 2: attack of RO - on the carbonyl carbon – O O: – CH3 -C-CH3 + :O-R CH3 -C-CH3 OR – Step 3: proton transfer from the alcohol to O - gives the hemiacetal and generates a new base catalyst O:– OH + - CH3 -C-CH3 + H OR CH3 -C-CH3 OR OR OR 343434 Organic Lecture Series Formation of a hemiacetal -- acid catalyzed Step 1: proton transfer to the carbonyl oxygen + H O fast and O reversible - CH3 -C-CH3 +H-A CH3 -C-CH3 + A Step 2: attack of ROH on the carbonyl carbon + H O O-H
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Enhanced Butanol Production by Free and Immobilized Clostridium Sp
    Enhanced Butanol Production by Free and Immobilized Clostridium sp. Cells Using Butyric Acid as Co-Substrate Laili Gholizadeh This thesis comprises 30 ECTS credits and is a compulsory part in the Master of Science with a Major in Chemical Engineering – Applied Biotechnology 120 ECTS credits No. 10/2009 Title: Enhanced Butanol Production by Free and Immobilized Clostridium sp. Cells using Butyric Acid as Co-Substrate. Author: Laili Gholizadeh Baroghi (e-mail: [email protected]) Master Thesis Subject Category: Biotechnology (Bioprocess Engineering – Biofuels) University College of Borås School of Engineering SE-501 90 BORÅS Telephone: (+46) 033 435 4640 Examiner: Prof. Mohammad Taherzadeh Supervisor and Thesis Advisor: Prof. Shang–Tian Yang Supervisor Address: OSU–Ohio State University 125 Koffolt Laboratories 140 West 19th Ave. Columbus, OH 43210–1185, USA Client: Ohio State University (OSU), Chemical & Biomolecular Engineering Department Prof. Shang–Tian Yang Columbus, Ohio; USA. Date: 08–12–2009 Keywords: Bio-butanol y Acetone–Butanol–Ethanol (ABE) y ABE- fermentation y Butyric acid y Clostridium y C. acetobutylicum ATCC 824 y C. beijerinckii ATCC 55025 y C. beijerinckii BA 101 y C. beijerinckii NCIMB 8052 y Fibrous-bed Bioreactor (FBB) y Batch y Suspended cell culture y Immobilized cell system. DEDICATION I would like to dedicate this M.Sc. Thesis to my beloved Family for all their love and encouragement and for always been supportive of my choices. “I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena, which impress him like a fairy tale.” − Marie Curie ABSTRACT Butanol production by four different Clostridium sp.
    [Show full text]
  • The Use of Spirocyclic Scaffolds in Drug Discovery ⇑ Yajun Zheng , Colin M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Bioorganic & Medicinal Chemistry Letters 24 (2014) 3673–3682 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl BMCL Digest The use of spirocyclic scaffolds in drug discovery ⇑ Yajun Zheng , Colin M. Tice, Suresh B. Singh Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States article info abstract Article history: Owing to their inherent three-dimensionality and structural novelty, spiro scaffolds have been increas- Received 15 April 2014 ingly utilized in drug discovery. In this brief review, we highlight selected examples from the primary Revised 17 June 2014 medicinal chemistry literature during the last three years to demonstrate the versatility of spiro scaffolds. Accepted 27 June 2014 With recent progress in synthetic methods providing access to spiro building blocks, spiro scaffolds are Available online 5 July 2014 likely to be used more frequently in drug discovery. Ó 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Keywords: license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Spirocyclic Scaffold Drug discovery One widely used strategy in drug design is to rigidify the ligand present in a number of bioactive natural products such as mito- conformation by introducing a ring.1 The resulting cyclic analog mycins, it is generally difficult to construct such aziridines from will suffer a reduced conformational entropy penalty upon binding unfunctionalized olefins. A recent report of a facile synthetic route to a protein target.
    [Show full text]
  • Chapter 77 These Powerpoint Lecture Slides Were Created and Prepared by Professor William Tam and His Wife, Dr
    About The Authors Chapter 77 These PowerPoint Lecture Slides were created and prepared by Professor William Tam and his wife, Dr. Phillis Chang. Professor William Tam received his B.Sc. at the University of Hong Kong in Alkenes and Alkynes I: 1990 and his Ph.D. at the University of Toronto (Canada) in 1995. He was an NSERC postdoctoral fellow at the Imperial College (UK) and at Harvard Properties and Synthesis. University (USA). He joined the Department of Chemistry at the University of Guelph (Ontario, Canada) in 1998 and is currently a Full Professor and Associate Chair in the department. Professor Tam has received several awards Elimination Reactions in research and teaching, and according to Essential Science Indicators , he is currently ranked as the Top 1% most cited Chemists worldwide. He has of Alkyl Halides published four books and over 80 scientific papers in top international journals such as J. Am. Chem. Soc., Angew. Chem., Org. Lett., and J. Org. Chem. Dr. Phillis Chang received her B.Sc. at New York University (USA) in 1994, her Created by M.Sc. and Ph.D. in 1997 and 2001 at the University of Guelph (Canada). She lives in Guelph with her husband, William, and their son, Matthew. Professor William Tam & Dr. Phillis Chang Ch. 7 - 1 Ch. 7 - 2 1. Introduction Alkynes ● Hydrocarbons containing C ≡C Alkenes ● Common name: acetylenes ● Hydrocarbons containing C=C H ● Old name: olefins N O I Cl C O C O CH2OH Cl F3C C Cl Vitamin A C H3C Cl H3C HH Efavirenz Haloprogin Cholesterol (antiviral, AIDS therapeutic) (antifungal, antiseptic) HO Ch.
    [Show full text]
  • Transcription 12.01.12
    Lecture 2B • 01/12/12 We covered three different reactions for converting alcohols into leaving groups. One was to turn an alcohol into an alkyl chloride, that was using thionyl chloride. Second reaction was using tosyl chloride; the primary difference between those two reactions is one of stereochemistry. An inversion of stereochemistry does occur if you use thionyl chloride, because it does affect the carbon-oxygen bond, but because forming a tosylate does not touch the carbon-oxygen bond, only the oxygen- hydrogen bond, there’s no change in stereochemistry there. We then saw phosphorus tribromide that reacts very similarly to the thionyl chloride; you get an alkyl bromide instead, but it also has inversion of configuration. The last reaction is not a new mechanism, it is just an Sn2 reaction, it’s called the Finkelstein reaction. Really this works, in a sense, off of Le Châtelier’s principle. In solution, in theory, sodium iodide can displace bromide, but sodium bromide can displace iodide, so you can have an Sn2 reaction that goes back and forth and back and forth and back and forth. Except, sodium iodide is somewhat soluble in acetone, while sodium chloride and sodium bromide are not. So, in fact, one of the things that we get out of this as a by-product is sodium bromide, which, again, is not soluble in acetone and therefore precipitates out and is no longer part of the reaction mixture, so there’s no reverse reaction possible. Because of this solubility trick, it allows this reaction to be pulled forward, which means you can get the alkyl iodide.
    [Show full text]
  • N-BUTYL ALCOHOL
    Right to Know Hazardous Substance Fact Sheet Common Name: n-BUTYL ALCOHOL Synonyms: Propyl Carbinol; n-Butanol CAS Number: 71-36-3 Chemical Name: 1-Butanol RTK Substance Number: 1330 Date: November 1998 Revision: January 2008 DOT Number: UN 1120 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE n-Butyl Alcohol is a colorless liquid with a strong, sweet Hazard Summary alcohol odor. It is used as a solvent for fats, waxes, shellacs, Hazard Rating NJDOH NFPA resins, gums, and varnish, in making hydraulic fluids, and in HEALTH - 2 medications for animals. FLAMMABILITY - 3 REACTIVITY - 0 f ODOR THRESHOLD = 1 to 15 ppm FLAMMABLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f n-Butyl Alcohol is on the Right to Know Hazardous f n-Butyl Alcohol can affect you when inhaled and by Substance List because it is cited by OSHA, ACGIH, DOT, passing through the skin. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can irritate and burn the skin. f This chemical is on the Special Health Hazard Substance f n-Butyl Alcohol can irritate and burn the eyes with possible List. eye damage. f Inhaling n-Butyl Alcohol can irritate the nose, throat and lungs. f Exposure to n-Butyl Alcohol can cause headache, dizziness, nausea and vomiting. SEE GLOSSARY ON PAGE 5. f n-Butyl Alcohol can damage the liver, kidneys, hearing, and sense of balance.
    [Show full text]
  • Organic Chemistry/Fourth Edition: E-Text
    CHAPTER 17 ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP O X ldehydes and ketones contain an acyl group RC± bonded either to hydrogen or Ato another carbon. O O O X X X HCH RCH RCRЈ Formaldehyde Aldehyde Ketone Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds, its central theme is a fundamental reaction type, nucleophilic addition to carbonyl groups. The principles of nucleophilic addition to alde- hydes and ketones developed here will be seen to have broad applicability in later chap- ters when transformations of various derivatives of carboxylic acids are discussed. 17.1 NOMENCLATURE O X The longest continuous chain that contains the ±CH group provides the base name for aldehydes. The -e ending of the corresponding alkane name is replaced by -al, and sub- stituents are specified in the usual way. It is not necessary to specify the location of O X the ±CH group in the name, since the chain must be numbered by starting with this group as C-1. The suffix -dial is added to the appropriate alkane name when the com- pound contains two aldehyde functions.* * The -e ending of an alkane name is dropped before a suffix beginning with a vowel (-al) and retained be- fore one beginning with a consonant (-dial). 654 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 17.1 Nomenclature 655 CH3 O O O O CH3CCH2CH2CH CH2 CHCH2CH2CH2CH HCCHCH CH3 4,4-Dimethylpentanal 5-Hexenal 2-Phenylpropanedial When a formyl group (±CHœO) is attached to a ring, the ring name is followed by the suffix -carbaldehyde.
    [Show full text]
  • Cu(II) Catalyzed Unsymmetrical Di-Oxidation of Gem- Difluoroalkenes to Generate Α,Α-Difluorinated-Α-Phenoxyketones, an Unstudied Substructure
    Cu(II) Catalyzed Unsymmetrical Di-oxidation of gem- Difluoroalkenes to Generate α,α-Difluorinated-α-Phenoxyketones, an Unstudied Substructure Suvajit Koley, [a] Kaylee T. Cayton, [b] Gisela A. González-Montiel,[b] M. Ramu Yadav,[c] Douglas L. Orsi,[d] Paul Ha-Yeon Cheong,*[b] and Ryan A. Altman*[a] [a] Dr. S. Koley, Dr. R. A. Altman Department of Medicinal Chemistry and Molecular Pharmacology; Department of Chemistry Purdue University West Lafayette, IN 47907 (USA) E-mail: [email protected] [b] K. T. Cayton, G. A. González-Montiel, Dr. P. H.-Y. Cheong Department of Chemistry Oregon State University 153 Gilbert Hall, Corvallis, OR 97331 (USA) [c] Dr. M. R. Yadav Department of Chemistry Indian Institute of Technology Delhi MS-723, Hauz Khas, New Delhi-110016 (India) [d] Dr. D. L. Orsi Broad Institute of Harvard and MIT Cambridge, MA 02142 (USA) Supporting information for this article is given via a link at the end of the document. Abstract: A Cu-based catalyst system convergently couples gem- conformers versus the parent alkyl-aryl ethers that preferentially difluoroalkenes with phenols under aerobic conditions to deliver α,α- reside in the plane of the arene,[23] and versus trifluoromethyl-aryl difluorinated-α-phenoxy ketones, an unstudied hybrid fluorinated ethers that reside orthogonally to the plane of the arene.[24] functional group. Composed of α,α-difluorinated ketone and α,α- Interestingly, despite the individual significance of the α,α- difluorinated ether moieties, these have only once been previously difluoroketone and α,α-difluoroalkyl ethers components, the reported as a synthetic intermediate en route to pharmacologically hybrid α,α-difluorinated-α-phenoxy-ketone functional group has active compounds.
    [Show full text]
  • 13C-13C Vicinal Coupling Constan
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 12, pp. 4948-4952, December 1975 Biophysics 13C-nuclear magnetic resonance study of [85% 13C-enriched proline]thyrotropin releasing factor: 13C-13C vicinal coupling constants and conformation of the proline residue (hypothalamic hormone/13C labeling/pH effects/angular dependence/pyrrolidine ring puckering) WOLFGANG HAAR*, SERGE FERMANDJIAN*§, JAROSLAV VICARt, KAREL BLAHAf, AND PIERRE FROMAGEOT* * Service de Biochimie, Centre d'Etudes Nucleaires de Saclay, B.P. no. 2, 91190-GIF-sur-Yvette, France; t Institute of Organic Chemistry and Biochemistry, Flemingoro Namesti 2, Prague, Czechoslovakia; and * Institute for Medical Chemistry, Palacky University, Olomouc, Czechoslovakia Communicated by Irvtine H. Page, September 22, 1975 ABSTRACT To understand fully interactions between with a natural peptide containing a single '3C-enriched peptides and cellular receptors, peptide side chain conforma- amino acid. In previous papers, we have demonstrated that tion must be defined. In many cases the complexity of proton 85% '3C-enrichment of amino acids offers several advan- nuclear magnetic resonance (NMR) prevents this but the tages (25-27) when compared to unenriched samples. Not present work demonstrates this problem can be solved by also those of using 13C enrichment. Selective '3C enrichment of a natural only are problems of concentration solved, but peptide hormone has been achieved by preparing [85% '3C signal assignment if only one amino acid is selectively la- enriched prolinelthyrotropin releasing factor which was ex- beled in the peptide. Furthermore '3C-'3C coupling con- amined by '3C NMR spectroscopy at various pH values. Be- stants, undetectable with unenriched samples, are easily cause of the '3C enrichment, one-bonded and three-bonded measured (28-89).
    [Show full text]
  • Transition Metal-Free Homologative Cross-Coupling of Aldehydes and Ketones with Geminal Bis(Boron) Compounds Thomas C
    Transition metal-free homologative cross-coupling of aldehydes and ketones with geminal bis(boron) compounds Thomas C. Stephens and Graham Pattison* Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. Supporting Information Placeholder ABSTRACT: We report a transition metal-free coupling of aldehydes and ketones with geminal bis(boron) building blocks which provides the coupled, homologated carbonyl compound upon oxidation. This reaction not only extends an alkyl chain containing a carbonyl group, it also simultaneously introduces a new carbonyl substituent. We demonstrate that enantiopure aldehydes with an enolizable stereogenic centre undergo this reaction with complete retention of stereochemistry. A range of coupling processes, both metal-catalyzed and proceed with a very high degree of stereocontrol over double metal-free, are transforming the way chemists build mole- bond geometry. 1 cules. Transition metal-free coupling processes are of particu- The key to our general synthetic strategy was the realization lar attraction due to very stringent requirements for low ppm that oxidation of this vinyl boronate will afford a homologated values of toxic transition metal residues in pharmaceutical aldehyde or ketone. Carbonyl compounds have proven to be products. As a result, a series of such transition metal-free some of the key mainstays of organic synthesis over the years, coupling processes are beginning to emerge, using in particu- being found in a broad range of biologically active compounds lar readily available building blocks such as organoboron as well as being key substrates for the synthesis of many alco- 2,3 compounds. hols, heterocycles and enolate condensation products. One class of organoboron building block which is seeing Homologation reactions of carbonyl compounds are significant recent attention are geminal-bis(boronates).
    [Show full text]
  • Alcoholsalcohols
    AlcoholsAlcohols Chapter 10 1 Structure of Alcohols • The functional group of an alcohol is H an -OH group bonded to an sp3 O 108.9° hybridized carbon. C H – Bond angles about the hydroxyl oxygen H H atom are approximately 109.5°. • Oxygen is sp3 hybridized. –Two sp3 hybrid orbitals form sigma bonds to a carbon and a hydrogen. – The remaining two sp3 hybrid orbitals each contain an unshared pair of electrons. 2 Nomenclature of Alcohols • IUPAC names – The parent chain is the longest chain that contains the OH group. – Number the parent chain to give the OH group the lowest possible number. – Change the suffix -etoe -ol.ol • Common names – Name the alkyl group bonded to oxygen followed by the word alcohol.alcohol 3 Nomenclature of Alcohols OH o o 1o OH 1 2 OH 1-Propanol 2-Propan ol 1-Bu tanol (Pro py l alco ho l) (Isoprop yl alcoh ol) (Bu tyl alcoh ol) OH 2o OH 1o OH 3o 2-Butanol 2-M eth yl-1-p ropan ol 2-M eth yl-2-p ropan ol (sec-Butyl alcohol) (Isobutyl alcohol) (tert -Butyl alcohol) 4 Nomenclature of Alcohols • Compounds containing more than one OH group are named diols, triols, etc. CH2 CH2 CH3 CHCH2 CH2 CHCH2 OH OH HO OH HO HO OH 1,2-Ethanediol 1,2-Propanediol 1,2,3-Propanetriol (Ethylene glycol) (Propylene glycol) (Glycerol, Glycerine) 5 Physical Properties • Alcohols are polar compounds. – They interact with themselves and with other polar compounds by dipole-dipole interactions. • Dipole-dipole interaction: The attraction between the positive end of one dipole and the negative end of another.
    [Show full text]
  • Strategies to Introduce N-Butanol in Gasoline Blends
    sustainability Article Strategies to Introduce n-Butanol in Gasoline Blends Magín Lapuerta *, Rosario Ballesteros and Javier Barba Escuela Técnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain; [email protected] (R.B.); [email protected] (J.B.) * Correspondence: [email protected] Academic Editors: Gilles Lefebvre and Francisco J. Sáez-Martínez Received: 13 February 2017; Accepted: 7 April 2017; Published: 12 April 2017 Abstract: The use of oxygenated fuels in spark ignition engines (SIEs) has gained increasing attention in the last few years, especially when coming from renewable sources, due to the shortage of fossil fuels and global warming concern. Currently, the main substitute of gasoline is ethanol, which helps to reduce CO and HC emissions but presents a series of drawbacks such as a low heating value and a high hygroscopic tendency, which cause higher fuel consumption and corrosion problems, respectively. This paper shows the most relevant properties when replacing ethanol by renewable n-butanol, which presents a higher heating value and a lower hygroscopic tendency compared to the former. The test matrix carried out for this experimental study includes, on the one hand, ethanol substitution by n-butanol in commercial blends and, on the other hand, either ethanol or gasoline substitution by n-butanol in E85 blends (85% ethanol-15% gasoline by volume). The results show that the substitution of n-butanol by ethanol presents a series of benefits such as a higher heating value and a greater interchangeability with gasoline compared to ethanol, which makes n-butanol a promising fuel for SIEs in commercial blends.
    [Show full text]