Alcoholsalcohols

Total Page:16

File Type:pdf, Size:1020Kb

Alcoholsalcohols AlcoholsAlcohols Chapter 10 1 Structure of Alcohols • The functional group of an alcohol is H an -OH group bonded to an sp3 O 108.9° hybridized carbon. C H – Bond angles about the hydroxyl oxygen H H atom are approximately 109.5°. • Oxygen is sp3 hybridized. –Two sp3 hybrid orbitals form sigma bonds to a carbon and a hydrogen. – The remaining two sp3 hybrid orbitals each contain an unshared pair of electrons. 2 Nomenclature of Alcohols • IUPAC names – The parent chain is the longest chain that contains the OH group. – Number the parent chain to give the OH group the lowest possible number. – Change the suffix -etoe -ol.ol • Common names – Name the alkyl group bonded to oxygen followed by the word alcohol.alcohol 3 Nomenclature of Alcohols OH o o 1o OH 1 2 OH 1-Propanol 2-Propan ol 1-Bu tanol (Pro py l alco ho l) (Isoprop yl alcoh ol) (Bu tyl alcoh ol) OH 2o OH 1o OH 3o 2-Butanol 2-M eth yl-1-p ropan ol 2-M eth yl-2-p ropan ol (sec-Butyl alcohol) (Isobutyl alcohol) (tert -Butyl alcohol) 4 Nomenclature of Alcohols • Compounds containing more than one OH group are named diols, triols, etc. CH2 CH2 CH3 CHCH2 CH2 CHCH2 OH OH HO OH HO HO OH 1,2-Ethanediol 1,2-Propanediol 1,2,3-Propanetriol (Ethylene glycol) (Propylene glycol) (Glycerol, Glycerine) 5 Physical Properties • Alcohols are polar compounds. – They interact with themselves and with other polar compounds by dipole-dipole interactions. • Dipole-dipole interaction: The attraction between the positive end of one dipole and the negative end of another. 6 Physical Properties • Hydrogen bonding:bonding When the positive end of one dipole is an H bonded to F, O, or N (atoms of high electronegativity) and the other end is F, O, or N. – The strength of hydrogen bonding in water is approximately 21 kJ (5 kcal)/mol. – Hydrogen bonds are considerably weaker than covalent bonds. – Nonetheless, they can have a significant effect on physical properties. 7 Hydrogen Bonding E.G. The association of ethanol molecules in the liquid state by hydrogen bonding. 8 Physical Properties • Ethanol and dimethyl ether are constitutional isomers. • Their boiling points are dramatically different – Ethanol forms intermolecular hydrogen bonds, which are attractive forces between its molecules, resulting in a higher boiling point. – There is no comparable attractive force between molecules of dimethyl ether. CH3 CH2 OH CH3 OCH3 Ethanol Dimethyl ether bp 78°C bp -24°C 9 Physical Properties • In relation to alkanes of comparable size and molecular weight, alcohols: – have higher boiling points. – are more soluble in water. • The presence of additional -OH groups in a molecule further increases solubility in water (polar solvents) and boiling points. 10 Acidity of Alcohols In dilute aqueous solution, alcohols are weakly acidic. + + : CH O:– + CH3 OH O H 3 H O H H H - + [CH3 O ][H3 O ] - 15.5 Ka = = 10 [CH3 OH] pKa = 1 5.5 11 Acidity of Alcohols Structural Compound Formula pKa Hydrogen chloride HCl -7 Stronger acid Acetic acid CH3 COOH 4.8 Methanol CH3 OH 15.5 Water H2 O 15.7 Ethanol CH3 CH2 OH 15.9 2-Propanol (CH3 ) 2 CHOH 17 Weaker 2-Methyl-2-propanol (CH3 ) 3 COH 18 acid Also given for comparison areK apvalues for water, acetic acid, and hydrogen chloride. 12 Reaction with Metals • Alcohols react with Li, Na, K, and other active metals to liberate hydrogen gas and form metal alkoxides. + 2CH3 OH + 2Na 2CH3 O Na + H2 Sodium methoxide (MeO Na+) 13 Reaction with Metals • Alcohols are also converted to metal alkoxides by reaction with bases stronger than the alkoxide ion. – One such base is sodium hydride. + + H CH3 CH2 OH+ Na H CH3 CH2 O Na + 2 Ethanol Sodium Sodium ethoxide hydride 2 ether; THF or alkanes (reaction is irreversible) 14 Reaction with HX – 3° alcohols react very rapidly with HCl, HBr, and HI. 25°C OH + HCl Cl + H2 O 2-Methyl-2- 2-Chloro-2- propanol methylpropane 15 Reaction with HX – Low-molecular-weight 1° and 2° alcohols are unreactive under these conditions. – 1° and 2° alcohols require concentrated HBr and HI to form alkyl bromides and iodides. H O 2 Br OH + HBr+ H2 O reflux 1-Butanol 1-Bromobutane OH X HX (conc) R R(H) Heat R R(H) H H 1o &2o ROH 1o &2o Halides 16 Reaction with HX - SN1 Step 1: Proton transfer to the OH group gives an oxonium ion. rapid and CH CH3 H : 3 + reversib le CH -C-OH + HOH CH -C O + :O H 3 3 + CH3 H CH3 H H Step 2: Loss of H2O gives a carbocation intermediate. slow, rate H CH H CH 3 determining 3 CH -C O CH -C+ + :O 3 + 3 SN 1 CH3 H CH3 H A 3° carbocation intermediate 17 Reaction with HX - SN1 Step 3: Reaction of the carbocation intermediate (an electrophile) with halide ion (a nucleophile) gives the product. CH3 CH3 fast CH3 -C+ + :Cl CH3 -C-Cl CH3 CH3 2-Chloro-2-methylpropane (tert-Butyl chloride) 18 Reaction with HX – SN2 1°alcohols react with HX by an SN2 mechanism. Step 1: Rapid and reversible proton transfer. rapid and H + reversible + + O H RCH2 -OH + HO H RCH2 -O H H H Step 2: Displacement of HOH by halide ion. H slow, rate H + determining - RCH -Br + : Br: + RCH2 -O 2 O H SN2 H 19 Reaction with PBr3 – SN2 • An alternative method for the synthesis of 1° and 2° bromoalkanes is reaction of an alcohol with phosphorous tribromide. – This method gives less rearrangement than with HBr. 20 Reaction with PBr3 – SN2 Step 1: Make a bond between a nucleophile and an electrophile and simultaneously beak a bond to give stable molecules or ions. Formation of a protonated dibromophosphite converts H2O, a poor leaving group, to a good leaving group. Step 2: Make a bond between a nucleophile and an electrophile and simultaneously beak a bond to give stable molecules or ions. 21 Reaction with SOCl2 • Thionyl chloride is the most widely used reagent for the conversion of 1° and 2° alcohols to alkyl chlorides. – A base, most commonly pyridine or triethylamine, is added to catalyze the reaction and to neutralize the HCl. ( NEt3 or ) OH pyridine + SOCl2 1-Heptanol Thionyl chloride Cl + SO2 + HCl 1-Chloroheptane 22 Reaction with SOCl2 • Reaction of an alcohol with SOCl2 in the presence of a 3° amine is stereoselective. – It occurs with inversion of configuration. OH Cl 3° amine + SOCl2 + SO2 + HCl (S)-2-Octanol Thionyl (R)-2-Chlorooctane chlorid e OH Cl SOCl2 R R(H) Pyridine or N(Et)3 R R(H) H H o o 1o &2o Chloride 1 &2 ROH N 23 Dehydration of ROH • An alcohol can be converted to an alkene by acid-catalyzed dehydration (a type of β- elimination). – 1° alcohols must be heated at high temperature in the presence of an acid catalyst, such as H2SO4 or H3PO4. 2° alcohols undergo dehydration at somewhat lower temperatures. – 3° alcohols often require temperatures at or only slightly above room temperature. 24 Dehydration of ROH H2 SO4 CH3 CH2 OH CH2 =CH2 + H2 O 180°C OH H2 SO4 + H2 O 140°C Cyclohexanol Cyclohexene CH3 CH3 H2 SO4 CH3 COH CH3 C= CH2 + H2 O 50°C CH3 2-Methyl-2-propanol 2-Methylpropene (tert- Butyl alcohol) (Isobutylene) 25 Dehydration of ROH – Where isomeric alkenes are possible, the alkene having the greater number of substituents on the double bond (the more stable alkene) usually predominates (Zaitsev rule). OH 85% H3 PO4 CH CH CHCH 3 2 3 heat 2-Butanol CH3 CH= CHCH3 + CH3 CH2 CH= CH2 + H2 O 2-Butene 1-Butene (80%) (20%) 26 Dehydration of ROH • Dehydration of 1° and 2° alcohols is often accompanied by rearrangement. H2 SO4 + OH 140 - 170°C 3,3-Dimethyl- 2,3-Dimethyl- 2,3-Dimethyl- 2-butanol 2-butene 1-butene (80%) (20%) – Acid-catalyzed dehydration of 1-butanol gives a mixture of three alkenes. H2 SO4 OH + + 140 - 170°C 1-Butanol trans- 2-butene cis- 2-butene 1-Butene (56%) (32%) (12%) 27 Dehydration of ROH Step 1: Proton transfer to the -OH group gives an oxonium ion. H H + H O rapid and O + reversible + H O H + O H H H Step 2: Loss of H2O gives a carbocation intermediate. HH+ slow, rate O determining + H2 O A 2° carbocation intermediate 28 Dehydration of ROH Step 3: Proton transfer from a carbon adjacent to the positively charged carbon to water. The sigma electrons of the C-H bond become the pi electrons of the carbon-carbon double bond. rap i d an d re v e rs i b l e + H O + + + H O H H H H H 29 Oxidation of 1o ROH • Oxidation of a primary alcohol gives an aldehyde or a carboxylic acid, depending on the experimental conditions. OH O O [O] [O] CH3 -C H CH3 -C-H CH3 -C-OH H A primary An aldehyde A carboxylic alcohol acid – oxidation to an aldehyde is a two-electron oxidation. – oxidation to a carboxylic acid is a four-electron oxidation. 30 Oxidation of ROH • A common oxidizing agent for this purpose is chromic acid, prepared by dissolving chromium(VI) oxide or potassium dichromate in aqueous sulfuric acid. H2 SO4 CrO3 + H2 O H2 Cr O 4 Chromium(VI) Chromic acid oxide H2 SO4 H2 O K2 Cr2 O7 H2 Cr 2 O7 2H2 Cr O 4 Potassium Chromic acid dichromate H2CrO4 31 Oxidation of 1o ROH • Oxidation of 1-octanol gives octanoic acid.
Recommended publications
  • Alcohols Combined 1405
    ALCOHOLS COMBINED 1405 Formulas: Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1405, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: (1) n-butyl alcohol (4) n-propyl alcohol (7) cyclohexanol (2) sec-butyl alcohol (5) allyl alcohol (8) isoamyl alcohol (3) isobutyl alcohol (6) diacetone alcohol (9) methyl isobutyl carbinol SYNONYMS: See Table 3. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Coconut shell charcoal, 100 mg/50 mg) ANALYTE: Compounds above FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL 5% 2-propanol in CS2 Compounds: (1-3 ) (4-9) VOL-MIN: 2 L 1 L INJECTION -MAX: 10 L 10 L VOLUME: 1 µL SHIPMENT: Routine TEMPERATURE -INJECTION: 220 °C SAMPLE -DETECTOR: 250 - 300 °C STABILITY: See Evaluation of Method. -COLUMN: 35 °C (7 minutes), to 60 °C at 5 °C/minute, hold 5 minutes, up to BLANKS: 2 to 10 field blanks per set 120 °C at 10 °C /minute, hold 3 minutes. CARRIER GAS: He, 4 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Not studied [1, 2]. ID; 0.5 µm film polyethylene glycol, DB- wax or equivalent BIAS: Not determined CALIBRATION: Solutions of analyte in eluent (internal OVERALL standard optional) PRECISION (Ö ): Not determined rT RANGE: See EVALUATION OF METHOD. ACCURACY: Not determined ESTIMATED LOD: 1 µg each analyte per sample PRECISION: See EVALUATION OF METHOD. APPLICABILITY: This method may be used to determine two or more of the specified analytes simultaneously.
    [Show full text]
  • Enhanced Butanol Production by Free and Immobilized Clostridium Sp
    Enhanced Butanol Production by Free and Immobilized Clostridium sp. Cells Using Butyric Acid as Co-Substrate Laili Gholizadeh This thesis comprises 30 ECTS credits and is a compulsory part in the Master of Science with a Major in Chemical Engineering – Applied Biotechnology 120 ECTS credits No. 10/2009 Title: Enhanced Butanol Production by Free and Immobilized Clostridium sp. Cells using Butyric Acid as Co-Substrate. Author: Laili Gholizadeh Baroghi (e-mail: [email protected]) Master Thesis Subject Category: Biotechnology (Bioprocess Engineering – Biofuels) University College of Borås School of Engineering SE-501 90 BORÅS Telephone: (+46) 033 435 4640 Examiner: Prof. Mohammad Taherzadeh Supervisor and Thesis Advisor: Prof. Shang–Tian Yang Supervisor Address: OSU–Ohio State University 125 Koffolt Laboratories 140 West 19th Ave. Columbus, OH 43210–1185, USA Client: Ohio State University (OSU), Chemical & Biomolecular Engineering Department Prof. Shang–Tian Yang Columbus, Ohio; USA. Date: 08–12–2009 Keywords: Bio-butanol y Acetone–Butanol–Ethanol (ABE) y ABE- fermentation y Butyric acid y Clostridium y C. acetobutylicum ATCC 824 y C. beijerinckii ATCC 55025 y C. beijerinckii BA 101 y C. beijerinckii NCIMB 8052 y Fibrous-bed Bioreactor (FBB) y Batch y Suspended cell culture y Immobilized cell system. DEDICATION I would like to dedicate this M.Sc. Thesis to my beloved Family for all their love and encouragement and for always been supportive of my choices. “I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena, which impress him like a fairy tale.” − Marie Curie ABSTRACT Butanol production by four different Clostridium sp.
    [Show full text]
  • Transcription 12.01.12
    Lecture 2B • 01/12/12 We covered three different reactions for converting alcohols into leaving groups. One was to turn an alcohol into an alkyl chloride, that was using thionyl chloride. Second reaction was using tosyl chloride; the primary difference between those two reactions is one of stereochemistry. An inversion of stereochemistry does occur if you use thionyl chloride, because it does affect the carbon-oxygen bond, but because forming a tosylate does not touch the carbon-oxygen bond, only the oxygen- hydrogen bond, there’s no change in stereochemistry there. We then saw phosphorus tribromide that reacts very similarly to the thionyl chloride; you get an alkyl bromide instead, but it also has inversion of configuration. The last reaction is not a new mechanism, it is just an Sn2 reaction, it’s called the Finkelstein reaction. Really this works, in a sense, off of Le Châtelier’s principle. In solution, in theory, sodium iodide can displace bromide, but sodium bromide can displace iodide, so you can have an Sn2 reaction that goes back and forth and back and forth and back and forth. Except, sodium iodide is somewhat soluble in acetone, while sodium chloride and sodium bromide are not. So, in fact, one of the things that we get out of this as a by-product is sodium bromide, which, again, is not soluble in acetone and therefore precipitates out and is no longer part of the reaction mixture, so there’s no reverse reaction possible. Because of this solubility trick, it allows this reaction to be pulled forward, which means you can get the alkyl iodide.
    [Show full text]
  • Aldehydes and Ketones
    Organic Lecture Series Aldehydes And Ketones Chap 16 111 Organic Lecture Series IUPAC names • the parent alkane is the longest chain that contains the carbonyl group • for ketones, change the suffix -e to -one • number the chain to give C=O the smaller number • the IUPAC retains the common names acetone, acetophenone, and benzophenone O O O O Propanone Acetophenone Benzophenone 1-Phenyl-1-pentanone (Acetone) Commit to memory 222 Organic Lecture Series Common Names – for an aldehyde , the common name is derived from the common name of the corresponding carboxylic acid O O O O HCH HCOH CH3 CH CH3 COH Formaldehyde Formic acid Acetaldehyde Acetic acid – for a ketone , name the two alkyl or aryl groups bonded to the carbonyl carbon and add the word ketone O O O Ethyl isopropyl ketone Diethyl ketone Dicyclohexyl ketone 333 Organic Lecture Series Drawing Mechanisms • Use double-barbed arrows to indicate the flow of pairs of e - • Draw the arrow from higher e - density to lower e - density i.e. from the nucleophile to the electrophile • Removing e - density from an atom will create a formal + charge • Adding e - density to an atom will create a formal - charge • Proton transfer is fast (kinetics) and usually reversible 444 Organic Lecture Series Reaction Themes One of the most common reaction themes of a carbonyl group is addition of a nucleophile to form a tetrahedral carbonyl addition compound (intermediate). - R O Nu - + C O Nu C R R R Tetrahedral carbonyl addition compound 555 Reaction Themes Organic Lecture Series A second common theme is
    [Show full text]
  • N-BUTYL ALCOHOL
    Right to Know Hazardous Substance Fact Sheet Common Name: n-BUTYL ALCOHOL Synonyms: Propyl Carbinol; n-Butanol CAS Number: 71-36-3 Chemical Name: 1-Butanol RTK Substance Number: 1330 Date: November 1998 Revision: January 2008 DOT Number: UN 1120 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE n-Butyl Alcohol is a colorless liquid with a strong, sweet Hazard Summary alcohol odor. It is used as a solvent for fats, waxes, shellacs, Hazard Rating NJDOH NFPA resins, gums, and varnish, in making hydraulic fluids, and in HEALTH - 2 medications for animals. FLAMMABILITY - 3 REACTIVITY - 0 f ODOR THRESHOLD = 1 to 15 ppm FLAMMABLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f n-Butyl Alcohol is on the Right to Know Hazardous f n-Butyl Alcohol can affect you when inhaled and by Substance List because it is cited by OSHA, ACGIH, DOT, passing through the skin. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can irritate and burn the skin. f This chemical is on the Special Health Hazard Substance f n-Butyl Alcohol can irritate and burn the eyes with possible List. eye damage. f Inhaling n-Butyl Alcohol can irritate the nose, throat and lungs. f Exposure to n-Butyl Alcohol can cause headache, dizziness, nausea and vomiting. SEE GLOSSARY ON PAGE 5. f n-Butyl Alcohol can damage the liver, kidneys, hearing, and sense of balance.
    [Show full text]
  • Strategies to Introduce N-Butanol in Gasoline Blends
    sustainability Article Strategies to Introduce n-Butanol in Gasoline Blends Magín Lapuerta *, Rosario Ballesteros and Javier Barba Escuela Técnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain; [email protected] (R.B.); [email protected] (J.B.) * Correspondence: [email protected] Academic Editors: Gilles Lefebvre and Francisco J. Sáez-Martínez Received: 13 February 2017; Accepted: 7 April 2017; Published: 12 April 2017 Abstract: The use of oxygenated fuels in spark ignition engines (SIEs) has gained increasing attention in the last few years, especially when coming from renewable sources, due to the shortage of fossil fuels and global warming concern. Currently, the main substitute of gasoline is ethanol, which helps to reduce CO and HC emissions but presents a series of drawbacks such as a low heating value and a high hygroscopic tendency, which cause higher fuel consumption and corrosion problems, respectively. This paper shows the most relevant properties when replacing ethanol by renewable n-butanol, which presents a higher heating value and a lower hygroscopic tendency compared to the former. The test matrix carried out for this experimental study includes, on the one hand, ethanol substitution by n-butanol in commercial blends and, on the other hand, either ethanol or gasoline substitution by n-butanol in E85 blends (85% ethanol-15% gasoline by volume). The results show that the substitution of n-butanol by ethanol presents a series of benefits such as a higher heating value and a greater interchangeability with gasoline compared to ethanol, which makes n-butanol a promising fuel for SIEs in commercial blends.
    [Show full text]
  • Alcohols I 1400
    ALCOHOLS I 1400 Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1400, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS AND SYNONYMS: (1) ethanol: ethyl alcohol. (2) isopropyl alcohol: 2-propanol. (3) tert-butyl alcohol: 2-methyl-2-propanol. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (coconut shell charcoal, 100 mg/50 mg) ANALYTE: compounds above FLOW RATE: 0.01 to 0.2 L/min (£0.05 L/min for ethyl alcohol) DESORPTION: 1 mL 1% 2-butanol in CS 2 (1) (2) (3) INJECTION VOL-MIN: 0.1 L 0.3 L 1.0 L VOLUME: 5 µL -MAX: 1 L 3 L 10 L TEMPERATURE-INJECTION: 200 °C SHIPMENT: cooled -DETECTOR: 250-300 °C -COLUMN: 65-70 °C SAMPLE STABILITY: unknown, store in freezer CARRIER GAS: N2 or He, 30 mL/min BLANKS: 2 to 10 field blanks per set COLUMN: glass, 2 m x 4-mm ID, 0.2% Carbowax 1500 on 60/80 Carbopack C or equivalent ACCURACY CALIBRATION: solutions of analyte in eluent (internal standard optional) RANGE STUDIED: see EVALUATION OF METHOD RANGE AND BIAS: not significant [1] PRECISION: see EVALUATION OF METHOD OVERALL PRECISION (S ˆ ): see EVALUATION OF METHOD rT ESTIMATED LOD: 0.01 mg per sample [2] ACCURACY: ± 14% APPLICABILITY: The working ranges are 16 to 1000 ppm ethanol (30 to 1900 mg/m 3) for a 1-L air sample; 4 to 400 ppm isopropyl alcohol (10 to 1000 mg/m 3) for a 3-L air sample; and 1 to 100 ppm t-butyl alcohol (3 to 300 mg/m 3) for a 10-L air sample.
    [Show full text]
  • Manganese-Catalyzed Β‑Alkylation of Secondary Alcohols with Primary Alcohols Under Phosphine-Free Conditions
    Letter Cite This: ACS Catal. 2018, 8, 7201−7207 pubs.acs.org/acscatalysis Manganese-Catalyzed β‑Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions † ‡ † † † § Tingting Liu, , Liandi Wang, Kaikai Wu, and Zhengkun Yu*, , † Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China ‡ University of Chinese Academy of Sciences, Beijing 100049, P. R. China § State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China *S Supporting Information ABSTRACT: Manganese(I) complexes bearing a pyridyl-supported pyr- azolyl-imidazolyl ligand efficiently catalyzed the direct β-alkylation of secondary alcohols with primary alcohols under phosphine-free conditions. The β-alkylated secondary alcohols were obtained in moderate to good yields with water formed as the byproduct through a borrowing hydrogen pathway. β-Alkylation of cholesterols was also effectively achieved. The present protocol provides a concise atom-economical method for C−C bond formation from primary and secondary alcohols. KEYWORDS: manganese, alcohols, alkylation, borrowing hydrogen, cholesterols onstruction of carbon−carbon bonds is of great impor- metals. In particular, it is capable of existing in several C tance in organic synthesis.1 More and more concern on oxidation states. Milstein and co-workers reported α- the consequence of climate change and dwindling crude oil olefination of nitriles,14a dehydrogenative cross-coupling of reserves results in the search for alternative carbon resources alcohols with amines,14b N-formylation of amines with 2 for the formation of C−C bonds. Thus, readily available methanol,15 and deoxygenation of alcohols16 catalyzed by alcohols have recently been paid much attention to be utilized pincer-type Mn-PNP complexes.
    [Show full text]
  • Final Report of the Addendum to The
    International Journal of Toxicology, 27(Suppl. 2f53—69, 2008 Copyright © American College of Toxicology ISSN: 1091-5818 print! 1092-874X online 001: 10.1080/10915810802244504 Final Report of the Addendum to the Safety Assessment of n-Butyl Alcohol as Used in Cosmetics’ n-Butyl Alcohol is a primary aliphatic alcohol historically used in care cosmetic products, but new concentration as a solvent nail INTRODUCTION of use data indicate that it also is being used at low concentrations in eye makeup, personal hygiene, and shaving cosmetic products. The Cosmetic Ingredient Review (CIR) evaluated the safety it-Butyl Alcohol has been generally recognized as safe for use as a of n-Butyl Alcohol (n-BuOH) in 1987, finding it safe in the flavoring substance in food and appears on the 1982 Food and Drug practices of use and concentration in nail products (Elder 1987). list of inactive ingredients for approved pre Administration (FDA) This original safety assessment was specific in that the conclu scription drug products. n-Butyl Alcohol can be absorbed through regards the use of n-Butyl Alcohol in the skin, tangs, and gastrointestinal tract. n-Butyl Alcohol may be sion was issued only as formed by hydrolysis of butyl acetate in the blood, but is rapidly nail products. oxidized. The single oral dose ED50 of n-Butyl Alcohol for rats was Recently, CIR undertook a re-review of this ingredient to de 0.79 to 4.36 g/kg. The dermal ED50 for rabbits was 4.2 g/kg. Inhala termine what additional data relevant to the safety of n-Butyl Al humans demonstrate sensory irritation of tion toxicity studies in 3.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Flammable Liquefied Gas Mixture: Ethanol / Isobutanol / Isopropanol (Isopropyl Alcohol) / Methanol / N-Butane / N-Butanol (N-Butyl Alcohol) / N-Propanol / Sec-Butyl Alcohol (2-Butanol) / Tert Butanol Section 1. Identification GHS product identifier : Flammable Liquefied Gas Mixture: Ethanol / Isobutanol / Isopropanol (Isopropyl Alcohol) / Methanol / N-Butane / N-Butanol (N-Butyl Alcohol) / N-Propanol / Sec-Butyl Alcohol (2-Butanol) / Tert Butanol Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 011439 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 Emergency telephone : 1-866-734-3438 number (with hours of operation) Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. May cause frostbite. May form explosive mixtures in Air. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction.
    [Show full text]
  • Azeotropic Isopropyl Alcohol
    Azeotropic Isopropyl Alcohol Type of Posting Revision Bulletin Posting Date 30-Jul-2021 Official Date 1-Feb-2022 Expert Committee Simple Excipients Expert Committee In accordance with the Rules and Procedures of the Council of Experts, the Simple Excipients Expert Committee has revised the Azeotropic Isopropyl Alcohol monograph. The purpose of the revision is to strengthen the Identification (ID) section of the monograph by including the Limit of Methanol test as an additional ID test. To address the serious hazards associated with the use of methanol-containing azeotropic isopropyl alcohol, the Simple Excipients Expert Committee (SE) has revised the Azeotropic Isopropyl Alcohol monograph. These revisions are consistent with a letter (Feb. 25, 2021) from, and a recent FDA Guidance (January 2021) issued by the U.S. Food and Drug Administration (FDA). USP previously revised the USP Alcohol and USP Dehydrated Alcohol monographs by including an Identification C test for “Limit of Methanol.” Additional information about that topic can be found in the Frequently Asked Questions for Alcohol and Dehydrated Alcohol. As mentioned in the Notice of Intent to Revise posted on Apr. 30, 2021, the purpose of these revisions is to strengthen the ID section of the monograph by including the test for Limit of Methanol as an additional ID test. The new Limit of Methanol test utilizes a gas-chromatography (GC) method similar to the Volatile Impurities test in the USP Azeotropic Isopropyl Alcohol monograph. The limit for methanol (200 µL/L) is the same as that in the USP Alcohol monograph, consistent with what is recommended in the FDA Guidance (January 2021).
    [Show full text]
  • These Two Workbooks Are Provided by As a Convenient Introduc
    These two workbooks are provided by www.hansen-solubility.com as a convenient introduc They are Copyright © 2013 Prof Steven Abbott If you find bugs/issues or would like extra functionality, please email Steven Abbott [email protected] ction to some of the basic HSP methods HSP Sphere dD dP dH R Good 11 18.4 9.7 8.0 7.1 Bad 11 Test Value 16 7 8 Total 22 Delta 2.4 11.4 10.4 Distance 5.5 RED 0.77 Solvents dD dP dH MVol Score Distance Acetone 15.5 10.4 7 73.8 1 5.915773 Acetonitrile 15.3 18 6.1 52.9 0 10.52754 n-Amyl Acetate 15.8 3.3 6.1 148 0 n-Amyl Alcohol 15.9 5.9 13.9 108.6 0 Benzene 18.4 0 2 52.9 0 11.38507 Benzyl Alcohol 18.4 6.3 13.7 103.8 0 Benzyl Benzoate 20 5.1 5.2 190.3 0 1-Butanol 16 5.7 15.8 92 0 2-Butanol 15.8 5.7 14.5 92 0 n-Butyl Acetate 15.8 3.7 6.3 132.6 0 t-Butyl Acetate 15 3.7 6 134.8 0 t-Butyl Alcohol 15.2 5.1 14.7 96 0 Butyl Benzoate 18.3 5.6 5.5 178.1 0 Butyl Diglycol Acetate 16 4.1 8.2 208.2 0 Butyl Glycol Acetate 15.3 7.5 6.8 171.2 0 n-Butyl Propionate 15.7 5.5 5.9 149.3 0 Caprolactone (Epsilon) 19.7 15 7.4 110.8 0 Chloroform 17.8 3.1 5.7 80.5 1 7.075453 m-Cresol 18.5 6.5 13.7 105 1 6.563973 Cyclohexane 16.8 0 0.2 108.9 0 12.82752 Cyclohexanol 17.4 4.1 13.5 105.7 0 Cyclohexanone 17.8 8.4 5.1 104.2 0 Di-isoButyl Ketone 16 3.7 4.1 177.4 0 Diacetone Alcohol 15.8 8.2 10.8 124.3 0 Diethyl Ether 14.5 2.9 4.6 104.7 0 10.87429 Diethylene Glycol Monobut 16 7 10.6 170.4 0 Dimethyl Cyclohexane 16.1 0 1.1 140 0 Dimethyl Sulfoxide (DMSO) 18.4 16.4 10.2 71.3 1 7.066692 1,4-Dioxane 17.5 1.8 9 85.7 0 8.160898 1,3-Dioxolane
    [Show full text]