Accumulation Pattern of Amygdalin and Prunasin and Its Correlation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Robert Cathey Research Source
THE ROBERT CATHEY RESEARCH SOURCE http://www.navi.net/~rsc A bibliography of essays and monographs by Dr. Krebs, John Beard and other's involved the metabolic resolution of cancer will be found at: http://www.navi.net/~rsc/krebsall.htm. rsc. (Updated 31 July 1997...see end of file for graphic links; for an essay on suggested mechanisms of action of nitrilosides; Also, certain terms are defined in the text for clarity and are included in brackets.rsc) THE NITRILOSIDES IN PLANTS AND ANIMALS Nutritional and Therapeutic Implications Ernst T. Krebs, Jr. John Beard Memorial Foundation (Privately published: 1964) Since the principal objective of this presentation is a study of the clinical use of the Laetriles (nitrilosides) because these substances yield nascent HCN [hydrocyanic acid] when they undergo enzymatic hydrolysis in vivo, it will be helpful if one begins with a general study of the nitrilosides in plants and animals. A nitriloside is a naturally occurring or synthetic compound which upon hydrolysis by a beta- glucosidase yields a molecule of a non-sugar, or aglycone, a molecule of free hydrogen cyanide, and one or more molecules of a sugar or its acid. There are approximately 14 naturally occurring nitrilosides distributed in over 1200 species of plants. Nitrilosides are found in all plant phyla from Thallophyta to Spermatophyta. The nitrilosides specifically considered in this paper are 1-mandelonitrile-beta-diglucoside (amygdalin) and its hydrolytic products; 1-para-hydroxymandelonitrile-beta-glucoside (dhurrin); methylethyl-ketone-cyanohydrin-beta-glucoside (lotaustralin); and acetone-cyanohydrin-beta- glucoside (linamarin). All of these compounds are hydrolysed to free HCN, one or more sugars and a non-sugar or aglycone. -
Scientific Opinion
SCIENTIFIC OPINION ADOPTED: DD Month YEAR doi:10.2903/j.efsa.20YY.NNNN 1 Evaluation of the health risks related to the 2 presence of cyanogenic glycosides in foods other than raw 3 apricot kernels 4 5 EFSA Panel on Contaminants in the Food Chain (CONTAM), 6 Margherita Bignami, Laurent Bodin, James Kevin Chipman, Jesús del Mazo, Bettina Grasl- 7 Kraupp, Christer Hogstrand, Laurentius (Ron) Hoogenboom, Jean-Charles Leblanc, Carlo 8 Stefano Nebbia, Elsa Nielsen, Evangelia Ntzani, Annette Petersen, Salomon Sand, Dieter 9 Schrenk, Christiane Vleminckx, Heather Wallace, Diane Benford, Leon Brimer, Francesca 10 Romana Mancini, Manfred Metzler, Barbara Viviani, Andrea Altieri, Davide Arcella, Hans 11 Steinkellner and Tanja Schwerdtle 12 Abstract 13 In 2016, the EFSA CONTAM Panel published a scientific opinion on the acute health risks related to 14 the presence of cyanogenic glycosides (CNGs) in raw apricot kernels in which an acute reference dose 15 (ARfD) of 20 µg/kg bw was established for cyanide (CN). In the present opinion, the CONTAM Panel 16 concluded that this ARfD is applicable for acute effects of CN regardless the dietary source. Estimated 17 mean acute dietary exposures to cyanide from foods containing CNGs did not exceed the ARfD in any 18 age group. At the 95th percentile, the ARfD was exceeded up to about 2.5-fold in some surveys for 19 children and adolescent age groups. The main contributors to exposures were biscuits, juice or nectar 20 and pastries and cakes that could potentially contain CNGs. Taking into account the conservatism in 21 the exposure assessment and in derivation of the ARfD, it is unlikely that this estimated exceedance 22 would result in adverse effects. -
Production, Pomological and Nutraceutical Properties of Apricot
1 Production, pomological and nutraceutical properties of apricot Khaled Moustafa1* and Joanna Cross2 1Editor of ArabiXiv (arabixiv.org), Paris, France 2Nigde Omer Halisdemir University, Nigde, Turkey Correspondence: [email protected] Abstract Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity. Keywords Apricot kernel oil, plum pox virus, prunus armeniaca, spring frost, stone fruit, sharka. -
Content of the Cyanogenic Glucoside Amygdalin in Almond Seeds Related
Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype Contenido del glucósido cianogénico amigdalina en semillas de almendra con relación al genotipo con sabor amargo Guillermo Arrázola1, Raquel Sánchez P.2, Federico Dicenta2, and Nuria Grané3 ABSTRACT RESUMEN Almond kernels can be sweet, slightly bitter or bitter. Bitterness Las semillas de almendras pueden ser dulces, ligeramente ama- in almond (Prunus dulcis Mill.) and other Prunus species is rgas y amargas. El amargor en almendro (Prunus dulcis Mill.) related to the content of the cyanogenic diglucoside amygdalin. y en otras especies de Prunus se relaciona con el contenido de When an almond containing amygdalin is chopped, glucose, la amígdalina diglucósido cianogénico. Cuando una almendra benzaldehyde (bitter flavor) and hydrogen cyanide (which que contiene amigdalina se tritura, produce glucosa, benzal- is toxic) are released. This two-year-study with 29 different dehído (sabor amargo) y ácido cianihídrico (que es tóxico). El almond cultivars for bitterness was carried out in order to estudio es realizado durante dos años, con 29 variedades de al- relate the concentration of amygdalin in the kernel with the mendra diferentes para la amargura o amargor, se ha realizado phenotype (sweet, slightly bitter or bitter) and the genotype con el fin de relacionar la concentración de la amígdalina en el (homozygous: sweet or bitter or heterozygous: sweet or slightly núcleo con el fenotipo (dulce, ligeramente amargo y amargo) bitter) with an easy analytical test. Results showed that there y el genotipo (homocigota: dulce o amargo o heterocigótico: was a clear difference in the amount of amygdalin between bit- dulce o amarga un poco) por un ensayo de análisis fácil. -
Development and Characterization of Microsatellite
Development and Characterization of Microsatellite Markers in Prunus sibirica (Rosaceae) Author(s): Hua-Bo Liu, Jun Liu, Zhe Wang, Li-Ying Ma, Si-Qi Wang, Xing-Gu Lin, Rong-Ling Wu, and Xiao-Ming Pang Source: Applications in Plant Sciences, 1(3) 2013. Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1200074 URL: http://www.bioone.org/doi/full/10.3732/apps.1200074 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Applications Applications in Plant Sciences 2013 1 ( 3 ): 1200074 in Plant Sciences P RIMER NOTE D EVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE 1 MARKERS IN P RUNUS SIBIRICA (ROSACEAE) H UA-BO L IU 2 , J UN L -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
Sodium Cyanide. Human Health Risk Assessment in Support of Registration Review
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION MEMORANDUM Date: September 18, 2018 SUBJECT: Sodium Cyanide. Human Health Risk Assessment in Support of Registration Review. PC Code: 045801 & 074002 DP Barcode: D447111 Decision No.: 541080 Registration No.: 6704-75, CA840006, etc. Petition No.: NA Regulatory Action: Registration Review Risk Assessment Type: Single Chemical, Aggregate Case No.: 3073 TXR No.: NA CAS No.: 74-90-8 & 143-33-9 MRID No.: NA 40 CFR: §180.130 FROM: Brian Van Deusen, Risk Assessor Janet Camp, Risk Assessor Thurston Morton, Dietary Assessor/Residue Chemist Minerva Mercado, Toxicologist Risk Assessment Branch 4 (RAB4) Health Effects Division (HED, 7509P) THROUGH: Donald Wilbur, Branch Chief Risk Assessment Branch 4 (RAB4) Health Effects Division (HED) (7509P) TO: Leigh Rimmer, Chemical Review Manager Nicole Zinn, Team Leader Risk Management and Implementation Branch 2 (RMIB2) Pesticide Re-evaluation Division (7508P) Office of Pesticide Programs As part of Registration Review, PRD has requested that HED evaluate the hazard and exposure data and estimate the risks to human health that will result from the currently registered uses of sodium cyanide. The most recent human health risk assessment for sodium cyanide was performed in 2006 (B. Daiss, 7/10/2006, D318015). A Human Health Assessment Scoping Document in Support of Registration Review (B. Daiss, 9/8/2010, D373692) for sodium cyanide was completed in 2010. No risk assessment updates other than an updated acute dietary exposure assessment have been made in conjunction with registration review. This memorandum is an updated review of the previous risk assessment and serves as HED’s draft human health risk assessment for the registered uses of sodium cyanide. -
Research Journal of Pharmaceutical, Biological and Chemical Sciences
ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Laetrile Or Amygdalin (Vitamin B-17) – Nutrient Or A Drug: A Review Of Running Controversies. MR Suchitra, and S Parthasarathy*. 1Department Of Biochemistry, SASTRA University, Tamil Nadu, India. 2Mahatma Gandhi Medical College And Research Institute, Sri Balaji Vidyapeeth University, Puducherry – South India ABSTRACT Amygdalin/Vitamin B17/Laetrile is a cyanogenic diglucoside, an active ingredient of several fruit pits and rawnuts was thought to possess anti-cancer properties. Amygdalin is contained in a few stone fruit kernels, such as apricot bitter almond, peach and plum and in the seeds of the apple. Even though there are a few animal and human studies which demonstrate the benefits of amygdalin in cancer, these are not well established in randomized clinical trials. When considering the other diseases like hypertension, pain, and bronchial asthma the role of Laetrile needs to be explored by using this drug as a supplement to regular therapeutic strategies. But as such the intake of apricot kernels and apple seeds should not be discouraged for fear of amygdalin toxicity in view of their other nutritional benefits. Keywords: laetrile, amygdalin, vitamin B17, *Corresponding author January – February 2019 RJPBCS 10(1) Page No. 437 ISSN: 0975-8585 INTRODUCTION AND CHEMISTRY Vitamin B17/Amygdalin/Laetrile is one of the most controversial vitamins in the last three decades. Chemically, it is a cyanogenic di-glucoside, but with a condensed formula of C20-H27-NO-11, and a MW (molecular weight) of 457. It has a chemical name of DMandelonetrile-betaglucoside-6 beta-D-glucoside. -
Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
Unconventional Cancer Treatments
Unconventional Cancer Treatments September 1990 OTA-H-405 NTIS order #PB91-104893 Recommended Citation: U.S. Congress, Office of Technology Assessment, Unconventional Cancer Treatments, OTA-H-405 (Washington, DC: U.S. Government Printing Office, September 1990). For sale by the Superintendent of Documents U.S. Government Printing OffIce, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword A diagnosis of cancer can transform abruptly the lives of patients and those around them, as individuals attempt to cope with the changed circumstances of their lives and the strong emotions evoked by the disease. While mainstream medicine can improve the prospects for long-term survival for about half of the approximately one million Americans diagnosed with cancer each year, the rest will die of their disease within a few years. There remains a degree of uncertainty and desperation associated with “facing the odds” in cancer treatment. To thousands of patients, mainstream medicine’s role in cancer treatment is not sufficient. Instead, they seek to supplement or supplant conventional cancer treatments with a variety of treatments that exist outside, at varying distances from, the bounds of mainstream medical research and practice. The range is broad—from supportive psychological approaches used as adjuncts to standard treatments, to a variety of practices that reject the norms of mainstream medical practice. To many patients, the attractiveness of such unconventional cancer treatments may stem in part from the acknowledged inadequacies of current medically-accepted treatments, and from the too frequent inattention of mainstream medical research and practice to the wider dimensions of a cancer patient’s concerns. -
Plums, Nectarines, Apricots, Cherries, Almonds and Prunus Hybrids
E-612 2-13 Texas Fruit and Nut Production lums, Nectarines, Apricots Cherries, Almonds and Prunus hybrids Larry Stein, Jim Kamas, and Monte Nesbitt Extension Fruit Specialists, The Texas A&M University System s closely related members of the rose family, plums and apricots typically require similar management. Both fruits have performed Amuch better in Texas than nectarines, almonds, sweet cherries, and Prunus hybrids because they are less susceptible to disease, varmints, and crop loss due to premature blooming. Plums The plum tree has white flowers and sets fruit on buds from previous season’s growth (Fig. 1). Usually Figure 1. A plum orchard in full bloom. the fruit has a dusty white coating or wax bloom that is easily rubbed off (Fig. 2). Plums can be sweet to tart; the skin is typically quite tart. The two main species used in the United States are the European plum, Prunus domestica, and the Japanese plum, Prunus salycina. The European plum includes varieties such as ‘Stanley’, which is grown for fresh fruit and often dried for use as prunes. These varieties have produced poorly in Texas because they require cold climates and are susceptible to fungal diseases such as brown rot. The varieties adapted to Texas are usually hybrids Figure 2. The dusty white coating associated with between P. domestica and P. salycina and are known plums is known as wax bloom. 1 Figure 4. Eating a ripe, juicy Figure 5. ‘Bruce’ plums. ‘Methley’ plum right off the tree. as Japanese or Japanese hybrid varieties. Most plum varieties are not self-fruitful.