Betanin, the Main Pigment of Red Beet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opuntia Dillenii (Ker-Gawl) Haw
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(6); 1101-1110 ISSN: 0975-4873 Research Article Pectin and Isolated Betalains from Opuntia dillenii (Ker-Gawl) Haw. Fruit Exerts Antiproliferative Activity by DNA Damage Induced Apoptosis Pavithra K1, Sumanth, M S2, Manonmani,H K2, ShashirekhaM N1* 1Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute Mysore -570 020, Karnataka, India 2Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore -570 020, Karnataka, India Available Online: 11th October, 2015 ABSTRACT In India, nearly three million patients are suffering from Cancer. There is an alarming increase in new cancer cases and every year ~ 4.5 million people die from cancer in the world. In recent years there is a trend to adopt botanical therapy that uses many different plant constituents as medicine. One plant may be able to address many problems simultaneously by stimulating the immune system to help fight off cancer cells. There appears to be exceptional and growing public enthusiasm for botanical or "herbal" medicines, especially amongst cancer patients. In present study, we studied the in vitro anticancer properties of various fractions of cactus Opuntia dillenii (Ker-Gawl) Haw.employing Erlich ascites carcinoma (EAC) cell lines. The EAC cells when treated with fractions of O. dillenii showed apoptosis that was further confirmed by fluorescent and confocal microscopy. In addition, Cellular DNA content was determined by Flow cytometric analysis, wherein pigment treated cells exhibited 78.88 % apoptosis while pulp and pectin treated cells showed 39 and 38% apoptosis respectively. Tunnel assay was carried out to detect extensive DNA degradation in late stages of apoptosis. -
Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite
materials Article Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite Shue Li 1,2,3, Bin Mu 1,3,*, Xiaowen Wang 1,3, Yuru Kang 1,3 and Aiqin Wang 1,3,* 1 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (S.L.); [email protected] (X.W.); [email protected] (Y.K.) 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China * Correspondence: [email protected] (B.M.); [email protected] (A.W.); Tel.: +86-931-486-8118 (B.M.); Fax: +86-931-496-8019 (B.M.) Received: 3 September 2020; Accepted: 15 October 2020; Published: 18 October 2020 Abstract: Eco-friendly betanin/clay minerals hybrid materials with good stability were synthesized by combining with adsorption, grinding, and heating treatment using natural betanin extracted from beetroot and natural 2:1 type palygorskite or 1:1 type halloysite. After incorporation of clay minerals, the thermal stability and solvent resistance of natural betanin were obviously enhanced. Due to the difference in the structure of palygorskite and halloysite, betanin was mainly adsorbed on the outer surface of palygorskite or halloysite through hydrogen-bond interaction, but also part of them also entered into the lumen of Hal via electrostatic interaction. Compared with palygorskite, hybrid materials prepared with halloysite exhibited the better color performance, heating stability and solvent resistance due to the high loading content of betanin and shielding effect of lumen of halloysite. -
Inhibitory Properties of Saponin from Eleocharis Dulcis Peel Against Α-Glucosidase
RSC Advances View Article Online PAPER View Journal | View Issue Inhibitory properties of saponin from Eleocharis dulcis peel against a-glucosidase† Cite this: RSC Adv.,2021,11,15400 Yipeng Gu, a Xiaomei Yang,b Chaojie Shang,a Truong Thi Phuong Thaoa and Tomoyuki Koyama*a The inhibitory properties towards a-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest a-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of a-glucosidase was caused by the formation of the daucosterol–a-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site Received 19th March 2021 and produced hydrophobic interactions with 3 residues located at the exterior part of the binding Accepted 9th April 2021 pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d1ra02198b glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used rsc.li/rsc-advances as a food supplement for anti-hyperglycemia. 1. Introduction a common hydrophytic vegetable that -
What Pigments Are in Plants?
BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin. -
Changes in Physical Properties and Chemical Composition
Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill.♦ Maria A. Livrea* and Luisa Tesoriere Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo Via Michele Cipolla 74, 90128 Palermo. Italy *corresponding author [email protected] ABSTRACT The health-promoting properties of edible fruits from Opuntia ficus-indica have been the object of recent interest. Scientific evidence has been provided about benefits from the consumption of the fruits in humans, with special attention to the non-nutritive components as potentially active antioxidant phytochemicals. Information about bioavailability and bioactivity of betalains, mode of action as antioxidants in cells, and other biological models are now available. The use of cactus pear components as nutraceuticals and functional food is discussed. Keywords: Opuntia ficus-indica, edible cactus, betanin, indicaxanthin, betalains, health benefits, in vivo, in vitro, natural oxidants, free-radical scavengers 1. INTRODUCTION An equilibrated life-style, a balanced diet, no smoking, and moderate physical activity are fundamental for maintaining a healthy status. Importantly, epidemiological evidence has been provided that various age-related pathologies, including cardiovascular diseases, cancer and neurodegenerative disorders have a minor incidence among people usually consuming a traditional Mediterranean-style diet, rich in fruit and vegetables (Ames et al., 1993; Lampe, 1999; Lee et al., 2004; Rice-Evans and Miller, 1985). Since these diseases -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Effects of Spermine and Putrescine Polyamines on Capsaicin Accumula- Tion in Capsicum Annuum L
doi:10.14720/aas.2020.115.2.1199 Original research article / izvirni znanstveni članek Effects of spermine and putrescine polyamines on capsaicin accumula- tion in Capsicum annuum L. cell suspension cultures Esra KOÇ 1, 2, Cemil İŞLEK 3, Belgizar KARAYİĞİT 1 Received June 25, 2019; accepted April 11, 2020. Delo je prispelo 25. junija 2019, sprejeto 11. aprila 2020 Effects of spermine and putrescine polyamines on capsaicin Učinki poliaminov spermina in putrescina na akumulacijo accumulation in Capsicum annuum L. cell suspension cul- kapsaicina v suspenzijski kulturi celic paprike Capsicum an- tures nuum L. Abstract: This study examined the effects of different con- Izvleček: V raziskavi so bili preučevani učinki različnih centrations of spermine (Spm) and putrescine (Put) elicitors on koncentracij spermina (Spm) in putrescina (Put) kot elicitorjev capsaicin production at different times in cell suspension cul- na tvorbo kapsaicina v različnih časovnih intervalih v suspen- ture of peper (Capsicum annuum L‘Kahramanmaraş Hat-187’.), zijski celični kulturi paprike (Capsicum annuum ‘Kahramanma- raised from pepper seeds. Callus was obtained from hypocotyl raş Hat-187’. Kalus je bil pridobljen iz izsečkov hipokotila kalic explants of pepper seedlings germinated in vitro conditions, paprike, ki je vzkalila v in vitro razmerah, celične suspenzije so and cell suspensions were prepared from calluses. Spm (0.1, 0.2 bile pripravljene iz kalusov. Spm (0,1; 0,2 in 0,4 mg l-1) in Put -1) and Put (0.1, 0.2 and 0.4 mg l-1) elicitors were ap- and 0.4 mg l (0,1; 0,2 in 0,4 mg l-1) sta bila dodajana kor elicitorja v celične plied on cell suspensions, and control groups free from elicitor suspenzije, hkrati so bile vzpostavljene kontrolne celične kul- treatment were created. -
Pitaia (Hylocereus Sp.): Uma Revisão Para O Brasil
Gaia Scientia (2014) Volume 8 (1): 90-98 Versão On line ISSN 1981-1268 http://periodicos.ufpb.br/ojs2/index.php/gaia/index Pitaia (Hylocereus sp.): Uma revisão para o Brasil Ernane Nogueira Nunes1*, Alex Sandro Bezerra de Sousa2, Camilla Marques de Lucena3, Silvanda de Melo Silva4, Reinaldo Farias Paiva de Lucena5, Carlos Antônio Belarmino Alves6 e Ricardo Elesbão Alves7. 1Aluno de Pós Graduação (Mestrado) do Programa de Pós Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. 2Aluno de Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. e-mail: [email protected] 3Aluna de Pós Graduação (Doutorado) do Programa de Pós Graduação em Desenvolvimento e Meio Ambiente. Universidade Federal da Paraíba. Campus I. João Pessoa, Paraíba, Brasil. CEP: 5801-970. e-mail: [email protected] 4Professora da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Ciências Fundamentais e Sociais. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 5Professor da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Fitotecnia e Ciências Ambientais. Setor de Ecologia e Biodiversidade. Laboratório de Etnoecologia. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 6Professor da Universidade Estadual da Paraíba. Centro de Humanidades. Guarabira, Paraíba, Brasil. CEP: 58.200-000. e-mail: [email protected] 7Pesquisadores da Empresa Brasileira de Pesquisa Agropecuária. EMBRAPA Agroindústria Tropical. Fortaleza. Ceará, Brasil. CEP: 60511-110. e-mail: [email protected]; [email protected] Artigo recebido em 17 janeiro 2013; aceito para publicação em 8 março 2014; publicado 12 março 2014 Resumo As espécies da família Cactaceae, possivelmente tiveram sua origem na América do Norte, Central e do Sul. -
Content of the Cyanogenic Glucoside Amygdalin in Almond Seeds Related
Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype Contenido del glucósido cianogénico amigdalina en semillas de almendra con relación al genotipo con sabor amargo Guillermo Arrázola1, Raquel Sánchez P.2, Federico Dicenta2, and Nuria Grané3 ABSTRACT RESUMEN Almond kernels can be sweet, slightly bitter or bitter. Bitterness Las semillas de almendras pueden ser dulces, ligeramente ama- in almond (Prunus dulcis Mill.) and other Prunus species is rgas y amargas. El amargor en almendro (Prunus dulcis Mill.) related to the content of the cyanogenic diglucoside amygdalin. y en otras especies de Prunus se relaciona con el contenido de When an almond containing amygdalin is chopped, glucose, la amígdalina diglucósido cianogénico. Cuando una almendra benzaldehyde (bitter flavor) and hydrogen cyanide (which que contiene amigdalina se tritura, produce glucosa, benzal- is toxic) are released. This two-year-study with 29 different dehído (sabor amargo) y ácido cianihídrico (que es tóxico). El almond cultivars for bitterness was carried out in order to estudio es realizado durante dos años, con 29 variedades de al- relate the concentration of amygdalin in the kernel with the mendra diferentes para la amargura o amargor, se ha realizado phenotype (sweet, slightly bitter or bitter) and the genotype con el fin de relacionar la concentración de la amígdalina en el (homozygous: sweet or bitter or heterozygous: sweet or slightly núcleo con el fenotipo (dulce, ligeramente amargo y amargo) bitter) with an easy analytical test. Results showed that there y el genotipo (homocigota: dulce o amargo o heterocigótico: was a clear difference in the amount of amygdalin between bit- dulce o amarga un poco) por un ensayo de análisis fácil. -
In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone. -
How to Improve the Functionality, Nutritional Value and Health
a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.17721 How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review Amanda Alves PRESTES1, Maryella Osório VARGAS2, Cristiane Vieira HELM3, Erick Almeida ESMERINO4, Ramon SILVA4, Elane Schwinden PRUDENCIO1,2* Abstract Fermented milks, with diverse manufacturing, fermentations and specific strains, have been consumed around the world, with a millennial knowledge of their production. These dairy products have a potential nutritional value, taking food industries to invest, nowadays, in dairy products with a functional and healthy appeal due to the changes in the habits and diet of the population. The addition of natural ingredients from vegetables and fruits into fermented milks is a tendency nowadays. The inclusion of natural additives may change the texture, composition, sensory attributes and increase of the shelf life since some compounds are related to have a high antioxidant activity, which decreases the development of deteriorating microorganisms. These called bioactive compounds are synthesized by plants and also may contribute to the fermented milk formulation, in special from fruits, which increase the sensory acceptance. Several classes of fruits bioactive compounds are associated to several health benefits and are a base of many studies about functional fermented milks, reported in this review. This theory background becomes essential for future studies and dairy products development. Keywords: dairy products; functional food; natural additives; antioxidant activity; prebiotics. Practical Application: Potential functional properties of fermented milks added of fruit bioactive compounds. 1 Introduction The dairy products manufacturing is known since Foods with a functional appeal are those that, besides to antiquity, with the fermentation process as a traditional promote basic nutrients, when consumed in a routine, produce approach to food preservation. -
Natural Colour Book
THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages.