Supplementary Heatmaps: This Supplementary Document Contains

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Heatmaps: This Supplementary Document Contains Supplementary Heatmaps: This supplementary document contains heatmaps for each of the 41 genes whose mutation status was correlated with the drastic over- and under-expression of other genes. Each page of this document contains: a single heatmap (plotted expressed genes X samples) with a title indicating the hugo symbol for the mutated gene; the sample-dependent mutation status plotted along the top of the heatmap (black bar indicates that sample is mutated in said gene); the hugo symbol for each expressed gene; a color legend for the magnitude and direction of correlation. Note: some heatmaps contain many expressed genes and therefore the hugo symbols are illegible—for this reason the reader is encouraged to use the accompanying spreadsheet Supplementary Mutation-correlated expression available in the online supplement. Color Key −2 0 2 4 Row Z−Score AKR1C3 Mutations HMGN2 CDK4 KLHL7 HOXD13 RCL1 Samples Color Key 0510 Row Z−Score ANK1 Mutations OTOR C6ORF124 Samples Color Key 05 Row Z−Score ATM Mutations PLK4KIFC1NCAPH MCM10TMPOBUB1B SNRPFBRCA2KIF22 TEX10EXOSC2CCT5 USP3DDX52DDX31 CCT3TAF5LTFDP2 BCS1LDET1GNPAT POLR2FACVR2ACENPC1 TRIM27UBXD6THOC5 ERCC3SFPQLOC90379 TP53C1ORF77SETDB1 ANKRD10GAS1LRP5 ZEB1ZNF22TPP2 AAASALDH8A1SACS THRAP3SAFBC17ORF85 PRR3AOF2BRD9 ZNF208ZNF493LIG3 SECISBP2ZNF510C11ORF30 ZSCAN16DLL3IKBKAP FAM77CZNF250CDC5L PDE10AKLRC4KLRC3 MAP3K4MTMR2SUSD5 UBE2IKIAA0922TMEM39B EDC3MCPH1TGS1 ATF7IPCCNJPDCD11 TFAMSUV39H2DHX8 RANBP17CBLN1ZNF239 PAPD1DCLRE1CZNF492 JMJD1CC10ORF18GTPBP4 CSTF2TPARGC10ORF137 IL13RA1FUCA1C10ORF68 MPP1CASP10PYCARD KCTD12TRIM22MAF MGST2PSMB10APOBEC3G ECHDC2ICAM3DOK1 SSPNDHX58FLJ11286 PAOXGJA1BHLHB3 FAHSTOMHEBP1 ACOX2RBKSBLVRB DYNLT3SLC25A24PSEN2 TMBIM1C3ORF14LGALS8 PHF11YIPF1PGCP FAM50BPNPLA4PPCS ACADSSLC25A20HDHD3 MT1ERBP1SLC22A5 RGNBDH1XKR8 TRIM68NUCB2MOSC2 ST5PRMT2SERGEF FBXO17KIAA0495PHKA2 EMP3F11RRAB36 EFEMP2TNFRSF1AMSN RAB11FIP5CYB561PHLDA3 SSH3SWAP70LBA1 DGKGC13ORF18KIAA0323 PH−4IDSNR3C2 Samples Color Key −5 0 Row Z−Score CHL1 Mutations SLC25A38 MLH3 Samples Color Key −2 0 2 4 Row Z−Score ConsReg523 Mutations CDK4 TSPAN31 TSFM CYP27B1 METTL1 FAM119B HOXA2 MDM2 GRB14 ZNF473 Samples Color Key −2 0 2 Row Z−Score DST Mutations UBE1L2 EIF2C4 SFRS16 SSR1 REST LOC90379 TOMM40 NRF1 ZNF432 WRN RIF1 GTF3C3 SF3B1 THRAP3 Samples Color Key −4 0 2 4 6 Row Z−Score EP300 Mutations TFDP2 CDH7 PRPS2 ACADS SLC25A20 CBR1 SSH3 HEBP1 Samples Color Key −2 0 2 4 Row Z−Score EP400 Mutations ZNF239 SEPHS1 GTPBP4 ZNF22 C10ORF68 SFRS6 Samples Color Key 05 Row Z−Score EPHB4 Mutations DEF6 PIK3CDPRKCD SLC24A6UNC93B1 FUCA1MKNK1 IL13RA1FES F11RLY75 ECHDC2PARP12 PHKA2FLJ11286 PYCARDRGS10 CASP10ACSL5 CADPS2PAOX RAB33BRRAS2 DHRS3C3ORF14 BLVRBSTOM SSPNC4ORF18 HEBP1BHLHB3 GJA1SLC7A11 TMEM47PPP1R3D TMBIM1SLC22A5 YIPF1PGCP NQO2PSEN2 RGNFAM50B HDHD3PNPLA4 SLC25A20ACADS EPHX2CBR1 TTC12RBKS MT1ERBP1 BDH1XKR8 MOSC2TMEM22 COBLTRIM68 PSMB10MGST2 APOBEC3DOK1 G FAHAPOBEC3F RAB32HFE ICAM3VAMP5 PPCSPHF11 SLC25A24PRPS2 RARRES2H2AFJ DYNLT3HPS1 IFITM2LGALS8 FAM129AC1S EMP3LEPREL1 EFEMP2MSN KIAA0323SWAP70 RAB3DHSPB1 FLJ21963TRIP6 KIAA0495C13ORF18 PICK1FBXO17 CYB561EML2 SDC4RAB11FIP5 RAB36C20ORF23 SSH3KLHL26 SUV39H2OPLAH TEX10EXOSC2 NCAPHPRR3 PLK4KIFC1 POLQMCM10 C10ORF13TFDP2 7 SKIV2L2TAF5 TAF5LTCERG1 SNRPFGNPAT CCT5UCK2 ALDH18A1GTPBP4 BMS1PDCD11 SETDB1GTF3C2 SMARCD1BRD9 GAS1LRP5 RANBP17SFRS6 TIAL1ZNF492 SUSD5TPTE C6ORF124DET1 MTMR2CDH7 PROX1DPYSL4 TPP2IKBKAP JMJD1CARHGEF7 Samples Color Key 05 Row Z−Score FBXW7 Mutations RGS10PYCARDCORO1A PRKCDCASP10IRF5TPK1 IL13RA1SLC24A6UNC93B1HLA−DRB6 HLA−ERARRES3NINJ1LY75 IRF7GLRXIFITM2IFITM3 PAOXPPP1R3DABHD8MARCH2 ADCK2EFHD2HPS1PAK1 FAHSQRDLNPC2C14ORF169 PSMB10DOK1APOBEC3FAPOBEC3G CD58YIPF1CD302MGST2 PPCSPHF11PGCPTMBIM1 HFEASLICAM3RAB32 ARSDHSPB1SH2D4ASLC25A24 HDHD3PNPLA4NQO2TRIP6 RAB3DRBP1ACADSSLC25A20 BLVRBSTOMXKR8MT1E PICK1LGALS8DYNLT3HEBP1 KIAA0323SSH3GALCEML2 SLC27A5MESTPRUNE2RRAGC MTHFSKHKSLC37A4ETV2 RAB33BFAM50BPDE6BS100A13 SSPNCOBLTDRD7C3ORF14 GJA1TMEM47ADRA1ABHLHB3 IQCGSLC22A5EPHX2CHRD KLHL26MOSC2RGNBDH1 MGC2752CAPNS1C13ORF18FLJ20699 EFEMP2MSNEMP3SLC43A3 PHKA2ECHDC2DDB2PLP2 RAB11FIP5CYB561FBXO17KIAA0495 PRPF4BSFRS2RAB36PSEN2 TAF5LEXOD1GTF3C3ERCC3 BRD9TRAF4SETDB1GTF3C2 THUMPD2NR2C1SFRS6CCT5 PLK4KIFC1NCAPHPOLA2 CNOT6MYBL1KIF14MKI67 MTMR2SR140SKIV2L2CCDC99 SCML2INTS7ZNF239EYA1 PRR3PHF16ZNF695TFDP2 TTC13GNPATDET1TEX10 DUSP10MLLT4C6ORF124AKAP7 TUBGCP4EDC3UBR5GAS1 FXYD7SUSD5GFRA1RANBP17 PCDHGA3TPTENEUROD4NEUROD1 ATXN2LPOLR3EEEF1DRPL23 LIMD1AMHEDG4UBFD1 POLQPOLENCAPD3MSH5 MTA2BOP1VARSCEP152 ZNF384CDK5RAP2NUP188PDCD11 DBN1PFASSMARCD1LRP5 EHMT2PROX1GSK3BJARID1B LBRRAF1ZNF318MDC1 DHX8KIAA0133NUP153TOPBP1 LRCH1WRNIP1CNNM3CDK10 HNRPA3HNRPH3SFRS1DNAJC7 ZC3H7ATPP2BRD1DDX46 JMJD1CARID4BMGEA5STX6 TCERG1PRDM10AGPAT4GNE C10ORF18GTPBP4IKBKAPSECISBP2 TAF5MPHOSPHPARGC10ORF1317 ZNF589ZNF37ABMS1ARHGEF11 QRICH1RNF123RAD54L2FLJ10213 CEP63RBM15BUSP19DHX30 ZNF167TSEN2PBRM1SMARCC1 LARSC4ORF15ANAPC1GNL3 KIAA0947DNAJC13C1ORF107NUCKS1 Samples Color Key 024 Row Z−Score FGFR1 Mutations ALDH1A3 ABCB4 Samples Color Key −4 0 2 4 6 Row Z−Score FGFR4 Mutations TFDP2 CDH7 PRPS2 ACADS SLC25A20 CBR1 SSH3 HEBP1 Samples Color Key −2 0 2 4 Row Z−Score FN1 Mutations ZNF239 SEPHS1 GTPBP4 ZNF22 C10ORF68 SFRS6 Samples Color Key 05 Row Z−Score FURIN Mutations RGS10PYCARDCORO1A PRKCDCASP10IRF5TPK1 IL13RA1SLC24A6UNC93B1HLA−DRB6 HLA−ERARRES3NINJ1LY75 IRF7GLRXIFITM2IFITM3 PAOXPPP1R3DABHD8MARCH2 ADCK2EFHD2HPS1PAK1 FAHSQRDLNPC2C14ORF169 PSMB10DOK1APOBEC3FAPOBEC3G CD58YIPF1CD302MGST2 PPCSPHF11PGCPTMBIM1 HFEASLICAM3RAB32 ARSDHSPB1SH2D4ASLC25A24 HDHD3PNPLA4NQO2TRIP6 RAB3DRBP1ACADSSLC25A20 BLVRBSTOMXKR8MT1E PICK1LGALS8DYNLT3HEBP1 KIAA0323SSH3GALCEML2 SLC27A5MESTPRUNE2RRAGC MTHFSKHKSLC37A4ETV2 RAB33BFAM50BPDE6BS100A13 SSPNCOBLTDRD7C3ORF14 GJA1TMEM47ADRA1ABHLHB3 IQCGSLC22A5EPHX2CHRD KLHL26MOSC2RGNBDH1 MGC2752CAPNS1C13ORF18FLJ20699 EFEMP2MSNEMP3SLC43A3 PHKA2ECHDC2DDB2PLP2 RAB11FIP5CYB561FBXO17KIAA0495 PRPF4BSFRS2RAB36PSEN2 TAF5LEXOD1GTF3C3ERCC3 BRD9TRAF4SETDB1GTF3C2 THUMPD2NR2C1SFRS6CCT5 PLK4KIFC1NCAPHPOLA2 CNOT6MYBL1KIF14MKI67 MTMR2SR140SKIV2L2CCDC99 SCML2INTS7ZNF239EYA1 PRR3PHF16ZNF695TFDP2 TTC13GNPATDET1TEX10 DUSP10MLLT4C6ORF124AKAP7 TUBGCP4EDC3UBR5GAS1 FXYD7SUSD5GFRA1RANBP17 PCDHGA3TPTENEUROD4NEUROD1 ATXN2LPOLR3EEEF1DRPL23 LIMD1AMHEDG4UBFD1 POLQPOLENCAPD3MSH5 MTA2BOP1VARSCEP152 ZNF384CDK5RAP2NUP188PDCD11 DBN1PFASSMARCD1LRP5 EHMT2PROX1GSK3BJARID1B LBRRAF1ZNF318MDC1 DHX8KIAA0133NUP153TOPBP1 LRCH1WRNIP1CNNM3CDK10 HNRPA3HNRPH3SFRS1DNAJC7 ZC3H7ATPP2BRD1DDX46 JMJD1CARID4BMGEA5STX6 TCERG1PRDM10AGPAT4GNE C10ORF18GTPBP4IKBKAPSECISBP2 TAF5MPHOSPHPARGC10ORF1317 ZNF589ZNF37ABMS1ARHGEF11 QRICH1RNF123RAD54L2FLJ10213 CEP63RBM15BUSP19DHX30 ZNF167TSEN2PBRM1SMARCC1 LARSC4ORF15ANAPC1GNL3 KIAA0947DNAJC13C1ORF107NUCKS1 Samples Color Key −3 −1 1 Row Z−Score HPN Mutations GALR1 NSMAF HGSNAT Samples Color Key −5 0 5 10 Row Z−Score IDH1 Mutations TRIT1SUPT3HZNF239WDR70VRK1C14ORF10HIST1H2AC16ORF68DUS2LCENPTRXRBRP5−1077HTRA2 BK4 PRR3RBMXRBM4TRMT12ARMC1CNOT8CHCHD8NDUFC2STX8RNF5NDUFB11PQBP1ZNF124 TUBD1ZNF187ZSCAN16SPASTRBM4BNARS2CEP57PRKRIRLOC40050TRAP1NIP30RRN3HIRIP3 6 ARL3CUEDC2ADKASCC1VPS26ATMLHEANGEL2TOMM70ARBM34PCCBTTC13COG2ZNF22 BCCIPMRPS16ECDRPP30GLRX3C10ORF68COMMD3PDSS1ATP5C1HSPA14COX15CUTCABI1 RPL10LRPL10RPL37ARPL39RPS10RPL18ARPS3SLC25A16TIAL1NOC3LCWF19L1TFAMMARCH5 ZNF695UPK2CHRNA4SLC25A21POLLPCCAKBTBD4ATP5G2PHB2RPS11RPL30RPL29RPL7A SKIV2L2CNOT6NAB1WDR67MYBL1MAPK8HSF2BPNHLH2LHX1ITGB1BP2DOK4TFAP4ZSCAN2 PALB2EXOD1THUMPD1FBXO38SF3B1CENPC1PRPF4BCCNT2GTF3C3ERCC3TCERG1DDX46SR140 PRKYHCRP1C16ORF67GSDMLEDG4UCNLRP2BPTRPC3PRDM10TERF1NPATNR2C1CSTF3 KIAA0528WDR42APOU6F1CALCOCO1LETMD1ANKZF1SEC31BC8ORF44CYP2E1ANGEL1ZNF409KIAA0913COL7A1 MSTNC2ORF33GADD45GUSTC20ORF42LUZP2C13ORF15TMEM100PDE8BRASSF4CRYABSUHW4ZNF518 BCL7ATOX3MYCNPHF16DLL3SLC22A14DNASE1L2AGERNUDT13SIGLEC6TNFBMPR1ANUDT4 LGR5ALCAMRBPJAMOTL2EYA1CDC5LLRRC1DNAJB5MARCKSMYCL1SLCO5A1VIPR2RPRM PCDH11XZFPM2SORCS3GFRA1ELAVL2CRTAC1FGF12C2ORF27ZNF804AFLRT1FCHSD2RAP2AEVL SPSB3LOC51035PELI2TUT1COL11A2DLGAP1DRP2SPTBN2PAX4LGALS4PRYFGF17TNR ZIC3REM1ASB13TPTEPTCH1PARD3DHTKD1CUGBP2PRKXSEMA4GPCDH21GRIK4SEMA6C SCD5DSCAMOLIG2ACCN4FXR2FASNPIK3R2ADD2DPYSL4DBN1CRMP1CPS1TRIM48 RFXAPTTC28HPS4GTPBP1EIF4ENIF1CSNK1ESAMM50AKT3MAPTRALGPS1C20ORF19ARHGEF9PID1 DCLRE1CFRMD4AZNF208ZNF257H2AFY2RANBP17CBLN1ADAMTS6NBR2ERCC5TPP2TUBGCP3FAM48A NACAP1RPL37RPL31RPL4EIF3EIPRPL3RPL23JOSD3PARGZNF248PAPD1WACMLLT10 MPSTPOLR2FKIAA0974CBARA1C10ORF22CSTF2TKIAA1279SIRT1SUSD5C10ORF76MMS19TUBGCP2TNKS2 H1F0CROCCMEF2DMTMR8CBLBBMP2EEF1GEIF3FIMPDH2VAX2CORO1CCECR5BID DET1XRCC4APAF1ERCC6KIAA0182BCOREPB41TLE3UPF2C10ORF18GTPBP4LARP5EIF4EBP2 KLHL20CDKAL1TUBGCP4EDC3TAF5C10ORF13MPHOSPHSUPV3L1DDX50NOLC1PDCD11MTA2PEO1 17 DHFRPOLA2ATAD2BRIP1TMPORACGAP1CDC2FBXO5KIF11PLK4EXO1KIFC1NCAPH E2F2CDC25CMXD3KIF22INTS7XRCC5TMEM97CKAP2RFC5HMGB3CDC25AKIF15CCDC99 SFRS2BYSLSRPK1TFDP2SCML2DNA2LZNF492ZNF286AAOF2ZNF643MCM10SUV39H2HIST1H4A USP3FAM60ANUP88C12ORF48TEX10EXOSC2DDX52SMARCE1UTP6NUP160ZNF207TAF11TIA1 ILF3SFRS1SFPQHNRNPRDHX9HNRPH1TAF5LBAT2EWSR1BRD1DCCNEUROD1INSM1 POLR3EMSH5CREBZFIKBKAPCAMSAP1TTF1SECISBP2NUP188MDC1SMPD4SUZ12ZNF131HNRPA3 NONORFWD3TCF3PFASLRP5SMARCD1CSNK2A1SETDB1GTF3C2INCENPFANCEBOP1VARS XRCC2POLQATAD5POLEKIF14MKI67SPAG5ESPL1TROAPCEP152LIMD1PRPF40ALBR NFX1PLCB4FHOD3KIAA1166C14ORF93HIC2ZNF74CENPJDBF4BDDX11WHSC1TOPBP1NCAPD3 RBM5CHD9TAF1CBTAF1CXORF45TROSIAH1UBAP2RNF38ZBTB5NFIBWDR32GNE RFX5ZNF589PHF8MED12PCNTSFRS15ZNF674GNL3LNFATC2IPUBE2G2CROPSFRS18NKTR JMJD1CARID4BMGEA5ANKRD26ZNF37AZNF236SLC12A6ZNF609VPS53MDN1BMS1ARHGEF11ATF7IP LRFN4TCF4NOVA1ZEB1ZNF254ZNF85ZNF682ZNF675ZNF253KLF12ARHGEF7CCDC88AMYST4 MSL2L1DVL2TBCDRBM12BPOU2F1ALMS1ZNF318POGZPBRM1SMARCC1CHD7BAHCC1AZI1 SAPS3JRKLGSK3BJARID1BJMJD3HCG_4073TMCC1HNRNPA1SLC39A6CTCFRAF1SMC3HNRPH3
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genetic Association with Overall Survival of Taxane-Treated Lung
    Genetic association with overall survival of taxane-treated lung cancer patients - a genome-wide association study in human lymphoblastoid cell lines followed by a clinical association study The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Niu, Nifang et al. “Genetic Association with Overall Survival of Taxane-treated Lung Cancer Patients - a Genome-wide Association Study in Human Lymphoblastoid Cell Lines Followed by a Clinical Association Study.” BMC Cancer 12.1 (2012): 422. CrossRef. Web. As Published http://dx.doi.org/10.1186/1471-2407-12-422 Publisher BioMed Central Ltd. Version Final published version Citable link http://hdl.handle.net/1721.1/77191 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.0 Genetic variations and paclitaxel response Supplementary Figure 1. Imputation analysis for 8 SNPs associated with both paclitaxel IC50 in LCLs and overall survival in lung cancer patients. SNPs within 200kb up-/downstream of those 8 SNPs were imputed. Black circles indicate SNPs observed by genotyping, while red triangles indicate imputed SNPs. The y-axis represents –log10(p-value) for the association of each SNP with paclitaxel IC50, and the x-axis represents the chromosomal locations of the SNPs. Genetic variations in paclitaxel response 1 Supplementary Table 1. Top 1415 SNPs that were associated with paclitaxel IC50 with p-values <10-3 and top 147 SNPs that were significantly associated with paclitaxel IC50
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • Gene Networks Activated by Specific Patterns of Action Potentials in Dorsal Root Ganglia Neurons Received: 10 August 2016 Philip R
    www.nature.com/scientificreports OPEN Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons Received: 10 August 2016 Philip R. Lee1,*, Jonathan E. Cohen1,*, Dumitru A. Iacobas2,3, Sanda Iacobas2 & Accepted: 23 January 2017 R. Douglas Fields1 Published: 03 March 2017 Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. Adaptation in the nervous system in response to external stimuli requires synthesis of new gene products in order to elicit long lasting changes in processes such as development, response to injury, learning, and memory1. Information in the environment is coded in the pattern of action-potential firing, therefore gene transcription must be regulated by the pattern of neuronal firing.
    [Show full text]
  • Fig1-13Tab1-5.Pdf
    Supplementary Information Promoter hypomethylation of EpCAM-regulated bone morphogenetic protein genes in advanced endometrial cancer Ya-Ting Hsu, Fei Gu, Yi-Wen Huang, Joseph Liu, Jianhua Ruan, Rui-Lan Huang, Chiou-Miin Wang, Chun-Liang Chen, Rohit R. Jadhav, Hung-Cheng Lai, David G. Mutch, Paul J. Goodfellow, Ian M. Thompson, Nameer B. Kirma, and Tim Hui-Ming Huang Tables of contents Page Table of contents 2 Supplementary Methods 4 Supplementary Figure S1. Summarized sequencing reads and coverage of MBDCap-seq 8 Supplementary Figure S2. Reproducibility test of MBDCap-seq 10 Supplementary Figure S3. Validation of MBDCap-seq by MassARRAY analysis 11 Supplementary Figure S4. Distribution of differentially methylated regions (DMRs) in endometrial tumors relative to normal control 12 Supplementary Figure S5. Network analysis of differential methylation loci by using Steiner-tree analysis 13 Supplementary Figure S6. DNA methylation distribution in early and late stage of the TCGA endometrial cancer cohort 14 Supplementary Figure S7. Relative expression of BMP genes with EGF treatment in the presence or absence of PI3K/AKT and Raf (MAPK) inhibitors in endometrial cancer cells 15 Supplementary Figure S8. Induction of invasion by EGF in AN3CA and HEC1A cell lines 16 Supplementary Figure S9. Knockdown expression of BMP4 and BMP7 in RL95-2 cells 17 Supplementary Figure S10. Relative expression of BMPs and BMPRs in normal endometrial cell and endometrial cancer cell lines 18 Supplementary Figure S11. Microfluidics-based PCR analysis of EMT gene panel in RL95-2 cells with or without EGF treatment 19 Supplementary Figure S12. Knockdown expression of EpCAM by different shRNA sequences in RL95-2 cells 20 Supplementary Figure S13.
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Supplementary Table 3 Gene Microarray Analysis: PRL+E2 Vs
    Supplementary Table 3 Gene microarray analysis: PRL+E2 vs. control ID1 Field1 ID Symbol Name M Fold P Value 69 15562 206115_at EGR3 early growth response 3 2,36 5,13 4,51E-06 56 41486 232231_at RUNX2 runt-related transcription factor 2 2,01 4,02 6,78E-07 41 36660 227404_s_at EGR1 early growth response 1 1,99 3,97 2,20E-04 396 54249 36711_at MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 1,92 3,79 7,54E-04 (avian) 42 13670 204222_s_at GLIPR1 GLI pathogenesis-related 1 (glioma) 1,91 3,76 2,20E-04 65 11080 201631_s_at IER3 immediate early response 3 1,81 3,50 3,50E-06 101 36952 227697_at SOCS3 suppressor of cytokine signaling 3 1,76 3,38 4,71E-05 16 15514 206067_s_at WT1 Wilms tumor 1 1,74 3,34 1,87E-04 171 47873 238623_at NA NA 1,72 3,30 1,10E-04 600 14687 205239_at AREG amphiregulin (schwannoma-derived growth factor) 1,71 3,26 1,51E-03 256 36997 227742_at CLIC6 chloride intracellular channel 6 1,69 3,23 3,52E-04 14 15038 205590_at RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 1,68 3,20 1,87E-04 55 33237 223961_s_at CISH cytokine inducible SH2-containing protein 1,67 3,19 6,49E-07 78 32152 222872_x_at OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1,66 3,15 1,23E-05 1969 32201 222921_s_at HEY2 hairy/enhancer-of-split related with YRPW motif 2 1,64 3,12 1,78E-02 122 13463 204015_s_at DUSP4 dual specificity phosphatase 4 1,61 3,06 5,97E-05 173 36466 227210_at NA NA 1,60 3,04 1,10E-04 117 40525 231270_at CA13 carbonic anhydrase XIII 1,59 3,02 5,62E-05 81 42339 233085_s_at OBFC2A oligonucleotide/oligosaccharide-binding
    [Show full text]
  • Supp Data.Pdf
    Supplementary Methods Verhaak sub-classification The Verhaak called tumor subtype was assigned as determined in the Verhaak et al. manuscript, for those TCGA tumors that were included at the time. TCGA data for expression (Affymetrix platform, level 1) and methylation (Infinium platform level 3) were downloaded from the TCGA portal on 09/29/2011. Affymetrix data were processed using R and Biocondutor with a RMA algorithm using quantile normalization and custom CDF. Level 3 methylation data has already been processed and converted to a beta-value. The genes that make up the signature for each of the 4 Verhaak groups (i.e. Proneural, Neural, Mesenchymal, and Classical) were downloaded. For each tumor, the averaged expression of the 4 genes signatures was calculated generating 4 ‘metagene’ scores, one for each subtype, (Colman et al.2010) for every tumor. Then each subtype metagene score was z-score corrected to allow comparison among the 4 metagenes. Finally, for each tumor the subtype with the highest metagene z-score among the four was used to assign subtype. Thus by this method, a tumor is assigned to the group to which it has the strongest expression signature. The shortcoming is that if a tumor has a ‘dual personality’ – for instance has strong expression of both classical and mesenchymal signature genes, there is some arbitrariness to the tumor’s assignment. Western Blot Analysis and cell fractionation Western blot analysis was performed using standard protocols. To determine protein expression we used the following antibodies: TAZ (Sigma and BD Biosciences), YAP (Santa Cruz Biotechnology), CD44 (Cell Signaling), FN1 (BD Biosciences), TEAD1, TEAD2, TEAD3, TEAD4 (Santa Cruz Biotechnology), MST1, p-MST1, MOB1, LATS1, LATS2, 14-3-3-, 1 ACTG2, (Cell Signaling), p-LATS1/2 (Abcam), Flag (Sigma Aldrich), Actin (Calbiochem), CAV2 (BD Biosciences), CTGF (Santa Cruz), RUNX2 (Sigma Aldrich), Cylin A, Cyclin E, Cyclin B1, p-cdk1, p-cdk4 (Cell Signaling Technologies).
    [Show full text]
  • WO 2012/054896 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number ι (43) International Publication Date ¾ ί t 2 6 April 2012 (26.04.2012) WO 2012/054896 Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C12N 5/00 (2006.01) C12N 15/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, C12N 5/02 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/US201 1/057387 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, 2 1 October 201 1 (21 .10.201 1) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/406,064 22 October 2010 (22.10.2010) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/415,244 18 November 2010 (18.1 1.2010) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, (71) Applicant (for all designated States except US): BIO- DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, TIME INC.
    [Show full text]
  • Preview of “Supplement Table S4.Xls”
    Annotations for all recurrently lost regions cytoband 1p36.12 3p14.2 3q13.13 q value 0,01352 0,1513 0,085307 residual q value 0,01352 0,1513 0,085307 wide peak boundaries chr1:23457835-23714048 chr3:60396160-60637030 chr3:110456383-110657226 genes in wide peak E2F2 FHIT DPPA4 ID3 DPPA2 TCEA3 DDEFL1 TBC1D19 PI4K2B STIM2 GBA3 KCNIP4 DKFZp761B107 C4orf28 GPR125 FLJ45721 hsa-mir-218-1 CXCL3 GRSF1 HNRPD HTN1 HTN3 IBSP IGFBP7 IGJ IL8 CXCL10 KDR CXCL9 AFF1 MUC7 NKX6-1 PF4 PF4V1 PKD2 POLR2B PPEF2 PPAT PPBP PRKG2 MAPK10 PTPN13 REST CXCL6 CXCL11 CXCL5 SPINK2 SPP1 SRP72 STATH SULT1E1 UGT2B4 UGT2B7 UGT2B10 UGT2B15 UGT2B17 SPARCL1 VDP SLC4A4 HERC3 GENX-3414 CDKL2 TMPRSS11D ABCG2 ADAMTS3 CLOCK CEP135 G3BP2 HNRPDL ENAM FAM13A1 CXCL13 PAICS UGT2B11 HPSE NMU SMR3B NPFFR2 UGT2A1 CCNI hsa-mir-491 hsa-mir-31 4p15.32 4q13.1 4q13.1 (continued) 6q14.1 0,14888 0,17878 0,093693 0,14888 0,17878 0,093693 chr4:17969802-29966659 chr4:55756035-90966136 chr6:76830186-107898353 CCKAR AFM SEC31A AIM1 DHX15 AFP RUFY3 BCKDHB RBPSUH ALB WDFY3 PRDM1 SOD3 AMBN LPHN3 CCNC SLIT2 ANXA3 DKFZP564O0823 CGA SLC34A2 AREG RCHY1 CNR1 PPARGC1A ART3 ANKRD17 EPHA7 KIAA0746 BMP3 BRDG1 GABRR1 ANAPC4 BTC SMR3A GABRR2 SLA/LP CCNG2 ASAHL GRIK2 LGI2 SCARB2 COQ2 HTR1B TBC1D19 CDS1 SULT1B1 HTR1E PI4K2B CENPC1 TMPRSS11E IMPG1 STIM2 CSN1S1 MRPS18C ME1 GBA3 CSN2 COPS4 NT5E KCNIP4 CSN3 HSD17B11 PGM3 DKFZp761B107 DCK HERC5 POU3F2 C4orf28 DMP1 PLAC8 PREP GPR125 DSPP NUDT9 SIM1 FLJ45721 EPHA5 NUP54 ELOVL4 hsa-mir-218-1 EREG UGT2B28 MAP3K7 FGF5 ODAM TPBG GC HERC6 TTK GK2 SDAD1 RNGTT GNRHR UBE1L2 TBX18
    [Show full text]
  • Figure S1. Gene Ontology Classification of Abeliophyllum Distichum Leaves Extract-Induced Degs
    Figure S1. Gene ontology classification of Abeliophyllum distichum leaves extract-induced DEGs. The results are summarized in three main categories: Biological process, Cellular component and Molecular function. Figure S2. KEGG pathway enrichment analysis using Abeliophyllum distichum leaves extract-DEGs (A). Venn diagram analysis of DEGs involved in PI3K/Akt signaling pathway and Rap1 signaling pathway (B). Figure S3. The expression (A) and protein levels (B) of Akt3 in AL-treated SK-MEL2 cells. Values with different superscripted letters are significantly different (p < 0.05). Table S1. Abeliophyllum distichum leaves extract-induced DEGs. log2 Fold Gene name Gene description Change A2ML1 alpha-2-macroglobulin-like protein 1 isoform 2 [Homo sapiens] 3.45 A4GALT lactosylceramide 4-alpha-galactosyltransferase [Homo sapiens] −1.64 ABCB4 phosphatidylcholine translocator ABCB4 isoform A [Homo sapiens] −1.43 ABCB5 ATP-binding cassette sub-family B member 5 isoform 1 [Homo sapiens] −2.99 ABHD17C alpha/beta hydrolase domain-containing protein 17C [Homo sapiens] −1.62 ABLIM2 actin-binding LIM protein 2 isoform 1 [Homo sapiens] −2.53 ABTB2 ankyrin repeat and BTB/POZ domain-containing protein 2 [Homo sapiens] −1.48 ACACA acetyl-CoA carboxylase 1 isoform 1 [Homo sapiens] −1.76 ACACB acetyl-CoA carboxylase 2 precursor [Homo sapiens] −2.03 ACSM1 acyl-coenzyme A synthetase ACSM1, mitochondrial [Homo sapiens] −3.05 disintegrin and metalloproteinase domain-containing protein 19 preproprotein [Homo ADAM19 −1.65 sapiens] disintegrin and metalloproteinase
    [Show full text]