Immunohematology JOURNAL of BLOOD GROUP SEROLOGY and EDUCATION

Total Page:16

File Type:pdf, Size:1020Kb

Immunohematology JOURNAL of BLOOD GROUP SEROLOGY and EDUCATION Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION VOLUME 17, NUMBER 1, 2001 From the publishers of Immunohematology A Comprehensive Laboratory Manual Immunohematology Methods and Procedures Featuring— • Over 100 methods— just about every method used in a reference lab. • Eleven chapters discussing problems faced by blood group serologists and the procedures and methods that can be used to solve them. • An extra set of the methods to use at the bench, printed on durable waterproof paper. • See business reply order card enclosed in this issue or order on the Web at redcross.org/immunohematology Now available from Montgomery Scientific Publications APPLIED BLOOD GROUP SEROLOGY, 4th EDITION by Peter D. Issitt and David J. Anstee A totally revised, mostly rewritten, fully up-to-date edition of one of the most popular books about the blood groups and blood transfusion ever published. I 46 chapters, an increase of 16 over the third edition 1 ″× ″ • 1,208 plus xxiv 8 /2 11 pages, hardbound, fully indexed, over 1,500 entries I 260 tables and 112 figures, an increase of more than 60% over the third edition • Over 13,500 references, more than 5,000 are papers written since 1985 Prices; each includes shipping: USA $125.00; Canada/International $130.00 (surface mail); International $170.00 (air mail). ALL ORDERS MUST BE PREPAID (Check or Credit Card) in U.S. DOLLARS International orders by check drawn on a bank in the USA or by credit card please. Order from: Montgomery Scientific Publications, P.O. Box 2704, Durham, NC 27715, U.S.A. Credit card orders accepted by fax at (919) 489-1235 (No phone orders, please.) We accept VISA,MasterCard, and Discover Card. Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION VOLUME 17, NUMBER 1, 2001 CONTENTS 1 Red blood cell antigen changes in malignancy: case report and review J.L. WINTERS AND D.S. HOWARD 10 Discrepancies in Rh(D) typing of sensitized red blood cells using monoclonal/polyclonal anti-D reagents: case report and review B.J. PADGET AND J.L. HANNON 14 Confirmation of positive antibody screens by solid-phase red cell adherence assay using a tube technique method with polyethylene glycol enhancement R.R. GAMMON, M. LAKE, N. VELASQUEZ, AND A. PRICHARD 17 Evaluation of a new solid-phase immunoassay for alloantibody detection using bromelin-treated and untreated red blood cells T. T AMAI AND T. M AZDA 22 Likelihood of D heterozygosity in Mestizo Mexicans and Mexican Americans N.D. MEANS, N. B ANDARENKO, K.J. MOISE, JR, AND M.E. BRECHER 24 BOOK REVIEW S. GERALD SANDLER, MD 25 COMMUNICATIONS Letter from the Editors ERRATA It’s our 17th year! Vol. 16, No. 4, 2000, p. 161 26 27 27 ANNOUNCEMENTS CLASSIFIED AD ADVERTISEMENTS 29 35 LITERATURE REVIEW INSTRUCTIONS FOR General (1999–2000) A U T H O R S EDITOR-IN-CHIEF MANAGING EDITOR Delores Mallory, MT(ASCP)SBB Mary H. McGinniss, AB, (ASCP)SBB Rockville, Maryland Bethesda, Maryland TECHNICAL EDITOR MEDICAL EDITOR Christine Lomas-Francis, MSc S. Gerald Sandler, MD Austin, Texas Washington, District of Columbia EDITORIAL BOARD Patricia Arndt, MT(ASCP)SBB Brenda J. Grossman, MD Scott Murphy, MD Los Angeles, California St. Louis, Missouri Philadelphia, Pennsylvania James P. AuBuchon, MD Christine Lomas-Francis, MSc Paul M. Ness, MD Lebanon, New Hampshire Austin, Texas Baltimore, Maryland Malcolm L. Beck, FIBMS, MIBiol Gary Moroff, PhD Mark Popovsky, MD Kansas City, Missouri Rockville, Maryland Braintree, Massachusetts Richard Davey, MD Ruth Mougey, MT(ASCP)SBB Marion E. Reid, PhD, FIBMS Rosslyn, Virginia Carrollton, Kentucky New York, New York Geoffrey Daniels, PhD John J. Moulds, MT(ASCP)SBB Susan Rolih, MS, MT(ASCP)SBB Bristol, United Kingdom Raritan, New Jersey Norcross, Georgia Sandra Ellisor, MS, MT(ASCP)SBB Marilyn K. Moulds, MT(ASCP)SBB David F. Stroncek, M.D. Raritan, New Jersey Houston, Texas Bethesda, Maryland George Garratty, PhD, FRCPath Marilyn J. Telen, MD Los Angeles, California Durham, North Carolina PRODUCTION ASSISTANT Linda Berenato COPY EDITOR Sonia E. Connor ELECTRONIC PUBLISHER Jane Moore Immunohematology is published quarterly (March, June, September, and December) by the American Red Cross, National Headquarters, Washington, DC 20006. The contents are cited in the EBASE/Excerpta Medica and Elsevier BIOBASE/Current Awareness in Biological Sciences (CABS) databases. The subscription price is $30.00 (U.S.) and $35.00 (foreign) per year. Subscriptions, Change of Address, and Extra Copies: Immunohematology, P.O. Box 40325 Philadelphia, PA 19106 Or call (215) 451–4902 Web site: redcross.org/immunohematology Copyright 2001 by The American National Red Cross ISSN 0894-203X Red blood cell antigen changes in malignancy: case report and review J.L.WINTERS AND D.S. HOWARD Red blood cell (RBC) antigens represent inherited neutrophils (normal 40 to 70%), 3 percent traits and as such, their expression should be constant metamyelocytes (normal 0%), 15 percent myelocytes throughout the life of an individual. We describe a (normal 0%), 7 percent lymphocytes (normal 24 to patient in whom the expression of the Rh D and C 44%), 1 percent monocytes (normal 3 to 7%), 4 percent antigens was lost due to the development of chronic basophils (normal 0 to 1%), 4% eosinophils (normal 0 to myelogenous leukemia (CML). For this patient, this 3%), and 1 percent blasts (normal 0%). A bone marrow represented more than a blood bank curiosity but was biopsy and aspirate were obtained and demonstrated of critical importance in determining further treatment a hypercellular (100%) bone marrow with histologic of the leukemia. and flow cytometric features consistent with CML. The mechanisms behind changes in RBC antigens Cytogenetic analysis revealed the presence of the due to malignancy are reviewed for a number of Philadelphia chromosome (t [9;22]), consistent with antigens, antigen systems, and antigen collections. CML. No further abnormalities, including abnormalities Previous case reports of RBC antigen changes due to of chromosome 1, were noted on karyotype analysis. malignancy are summarized. Subsequent molecular studies from peripheral blood confirmed the presence of BCR/ABL fusion product. Key Words: leukemia, erythrocytes, antigens, mutation, The patient was treated with hydroxyurea for ABO blood group system, Rh blood group system, MNS normalization of peripheral blood counts. blood group system, Lewis blood group system, I blood Following initial presentation and management, the group collection, chromosome abnormalities patient was referred to our center to be evaluated for syngeneic hematopoietic stem cell transplantation as Case Report definitive therapy for her diagnosis. The patient’s A 48-year-old Caucasian woman presented to a physical examination and pretransplant organ function referring clinic with a 3-month history of increasing studies were normal. Results from physical examination malaise and poor energy. She had experienced recent and donor evaluation studies of the patient’s sibling bruising and abdominal pain. Her past medical history were also normal. The twins physically appeared to be revealed a well adult with prior surgeries including total identical. Molecular typing of the sisters for HLA abdominal hysterectomy and tonsillectomy/ revealed them to be identical (6 out of 6 match at the adenoidectomy and no prior hospitalizations for HLA-A, HLA-B, and HLA-DR loci). Additional molecular medical illnesses. She was on no routine medications. studies were undertaken to prove that the sisters were She denied exposure to known marrow toxins. Her identical twins. These consisted of comparing four family history revealed her to be one of a set of variable number of tandem repeats (VNTRs) and nine identical twins. Significant physical exam findings short tandem repeats (STR) loci. The two were identical included multiple bruises on the extremities and a at all 13 loci tested. However, ABO and Rh typing by palpable spleen. Hemogram showed a white blood cell serologic methods revealed that the patient typed as A, count of 225,200/mL (normal 4,800 to 10,800/mL), D– whereas her sister typed as A, D+. In order to resolve hematocrit of 36.8 percent (normal 37 to 47%), this apparent discrepancy, additional testing was hemoglobin of 12.8 g/dL (normal 12 to 16 g/dL), and a performed. A new specimen was obtained from each platelet count of 468,000/mL (normal 130,000 to sister that confirmed the previous ABO and Rh typing. 400,000/mL). White cell differential showed 65 percent Weak D testing with appropriate controls was IMMUNOHEMATOLOGY, VOLUME 17, NUMBER 1, 2001 1 J.L. WINTERS AND D.S. HOWARD performed on the patient and was negative. An aspirate for the presence of the BCR/ABL fusion extended RBC phenotype was performed and is given product remain positive. below: Patient: D–, C– E–, c+, e+, M+, N+, S+, s–, K–, k+, Changes in Red Blood Cell Antigens With Fy(a+b+), Jk(a+b+) Malignancy Either loss or diminished expression of RBC antigens Sister: D+, C+, E–, c+, e+, M+, N+, S+, s–, K–, k+, have been reported to occur in a number of Fy(a+b+), Jk(a+b+) malignancies (both hematologic and solid; see Table 1). Additional history was obtained from the patient and The first report,2 and those which make up the majority from review of outside medical records. As opposed to of reports,3–6 have involved alterations in the expression her current D– typing, the patient had typed as D+ at of ABO blood group antigens. In addition to the ABO the birth of her second child in 1982 and also at four blood group system, multiple other antigens and whole blood donations between 1984 and 1989. antigen systems/collections have been reported to be Therefore, further testing was initiated. Additional affected by malignancy (see Table 1). studies included molecular genotyping for the RHD These changes in blood group antigens can result gene via polymerase chain reaction.
Recommended publications
  • The Fetal Center SPRING 2019 JOURNAL in This Issue
    The Fetal Center SPRING 2019 JOURNAL In This Issue FEATURES: TAKING THE RESEARCH LONG VIEW TOWARD PREVENTION OF RHESUS DISEASE 06 A New Clinical Trial: Umbilical Cord Blood Mononuclear Cells for Hypoxic Neurologic Injury 01 Leaders in Innovation: Rhesus Disease in Infants with Congenital Diaphragmatic Hernia Diagnosis and Treatment NEWS OF NOTE 04 A Miracle Baby for the Pinedas 08 The Fetal Center Welcomes New Recruits 09 NAFTNet Leadership Contact Us THE FETAL CENTER AT CHILDREN’S MEMORIAL HERMANN HOSPITAL UT Physicians Professional Building 6410 Fannin, Suite 210 Houston, TX 77030 Phone: 832.325.7288 Fax: 713.383.1464 Email: [email protected] Located within the Texas Medical Center, The Fetal Center is affiliated with Children’s ★FETAL Memorial Hermann Hospital, McGovern Medical NR School at UTHealth, and UT Physicians. To view The Fetal Center’s online resources, visit childrens.memorialhermann.org/thefetalcenter. FEATURE Leaders in Innovation: Rhesus Disease Diagnosis and Treatment Rhesus (Rh) disease, also known as Reproductive Sciences and the department of Rh-induced hemolytic disease of the Pediatric Surgery at McGovern Medical School at UTHealth. “The antibodies don’t usually cause fetus and newborn (HDFN), rhesus problems during a first pregnancy, because the baby alloimmunization or erythroblastosis may be born before the level of antibodies is high enough to have an effect. Rh antibodies are more fetalis, is relatively rare, occurring in likely to cause problems in second or later pregnan- about 2.5 out of every 100,000 live cies if the baby is Rh positive. Rh antibodies cross the placenta and attack the baby’s red blood cells, births in countries with well-established causing hemolytic anemia in the baby and leading to healthcare infrastructures.
    [Show full text]
  • Hemolytic Disease of the Newborn
    Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly.
    [Show full text]
  • Role of Infection and Immunity in Bovine Perinatal Mortality: Part 2
    animals Review Role of Infection and Immunity in Bovine Perinatal Mortality: Part 2. Fetomaternal Response to Infection and Novel Diagnostic Perspectives Paulina Jawor 1,* , John F. Mee 2 and Tadeusz Stefaniak 1 1 Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; [email protected] 2 Animal and Bioscience Research Department, Teagasc, Moorepark Research Centre, P61 P302 Fermoy, County Cork, Ireland; [email protected] * Correspondence: [email protected] Simple Summary: Bovine perinatal mortality (death of the fetus or calf before, during, or within 48 h of calving at full term (≥260 days) may be caused by noninfectious and infectious causes. Although infectious causes of fetal mortality are diagnosed less frequently, infection in utero may also compromise the development of the fetus without causing death. This review presents fetomaternal responses to infection and the changes which can be observed in such cases. Response to infection, especially the concentration of immunoglobulins and some acute-phase proteins, may be used for diagnostic purposes. Some changes in internal organs may also be used as an indicator of infection in utero. However, in all cases (except pathogen-specific antibody response) non-pathogen-specific responses do not aid in pathogen-specific diagnosis of the cause of calf death. But, nonspecific markers of in utero infection may allow us to assign the cause of fetal mortality to infection and thus Citation: Jawor, P.; Mee, J.F.; increase our overall diagnosis rate, particularly in cases of the “unexplained stillbirth”. Stefaniak, T. Role of Infection and Immunity in Bovine Perinatal Abstract: Bovine perinatal mortality due to infection may result either from the direct effects of Mortality: Part 2.
    [Show full text]
  • The Rhesus Factor and Disease Prevention
    THE RHESUS FACTOR AND DISEASE PREVENTION The transcript of a Witness Seminar held by the Wellcome Trust Centre for the History of Medicine at UCL, London, on 3 June 2003 Edited by D T Zallen, D A Christie and E M Tansey Volume 22 2004 ©The Trustee of the Wellcome Trust, London, 2004 First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2004 The Wellcome Trust Centre for the History of Medicine at University College London is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 0 85484 099 1 Histmed logo images courtesy Wellcome Library, London. Design and production: Julie Wood at Shift Key Design 020 7241 3704 All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/ Please cite as : Zallen D T, Christie D A, Tansey E M. (eds) (2004) The Rhesus Factor and Disease Prevention. Wellcome Witnesses to Twentieth Century Medicine, vol. 22. London: Wellcome Trust Centre for the History of Medicine at UCL. CONTENTS Illustrations and credits v Witness Seminars: Meetings and publications;Acknowledgements vii E M Tansey and D A Christie Introduction Doris T Zallen xix Transcript Edited by D T Zallen, D A Christie and E M Tansey 1 References 61 Biographical notes 75 Glossary 85 Index 89 Key to cover photographs ILLUSTRATIONS AND CREDITS Figure 1 John Walker-Smith performs an exchange transfusion on a newborn with haemolytic disease. Photograph provided by Professor John Walker-Smith. Reproduced with permission of Memoir Club. 13 Figure 2 Radiograph taken on day after amniocentesis for bilirubin assessment and followed by contrast (1975).
    [Show full text]
  • 20 Hemolytic Anemias Due to Abnormal Red Cell Enzymes
    Hemolytic Anemias Due to Abnormal Red Cell Enzymes MODULE Hematology and Blood Bank Technique 20 HEMOLYTIC ANEMIAS DUE TO Notes ABNORMAL RED CELL ENZYMES 20.1 INTRODUCTION The main metabolic substrate for the RBCs is glucose. It is metabolized by two pathways: approximately 90% of the glucose is metabolized through the Embden Meyerhoff (glycolytic) pathway and the rest by the hexose monophosphate (HMP) pathway. In the Embden Meyerhoff (glycolytic) pathway glucose is metabolized to lactate through a series of enzymatic steps. Each molecule of glucose gives rise to 2 molecules of ATP. The ATP provides energy to maintain red cell volume, shape and flexibility. An ATP dependent pump in the red cell membrane actively keeps sodium out of the cell and potassium inside. The red cell has the enzymes that are needed for the glycolytic pathway. These enzymes help break down glucose to generate ATP which is the source of energy. About 10% of the glucose is diverted to the Hexose Monophosphate shunt pathway and this is essential for protection of red cells from oxidative stress. This pathway is necessary for the generation of NADPH which then reduces oxidized glutathione (GSSG) to reduced glutathione (GSH). GSH prevents the accumulation of H2O2 and the oxidation of hemoglobin to methemoglobin. When the level of GSH falls, H2O2 accumulates in the cell and oxidizes the hemoglobin to methemoglobin which becomes denatured and precipitates as Heinz bodies. These inclusions are rigid and attached to the red cell membrane and make the red cell susceptible to hemolysis. The NADPH required in this pathway is generated by the enzyme Glucose 6 phosphate dehydrogenase (G6PD).
    [Show full text]
  • Severe Fetomaternal Alloimmune Thrombocytopenia Presenting with Fetal Hydrocephalus
    PRENATAL DIAGNOSIS, VOL. 16 1 152-1 155 (1996) SHORT COMMUNICATION SEVERE FETOMATERNAL ALLOIMMUNE THROMBOCYTOPENIA PRESENTING WITH FETAL HYDROCEPHALUS M. F. MURPHY*, H. HAMBLEYt, K. NICOLAIDESS AND A. H. WATERS* *Department of Haematology, St Bartholomew's Hospital and tDepartment of Haematology and $Harris Birthright Fetal Medicine Research Centre, King's College Hospital, London, U K. Received 22 February 1996 Accepted 7 July 1996 SUMMARY We report two patients where the finding of isolated fetal hydrocephalus led to the detection of severe fetal thrombocytopenia, using fetal blood sampling. Serological investigation led to the diagnosis of fetomaternal alloimmune thrombocytopenia (FMAIT) due to anti-HPA- I a. Both women had had previous unsuccessful pregnancies probably due to FMAIT; one had had four miscarriages at 17-18 weeks' gestation. The other had had one previous pregnancy complicated by severe fetal anaemia, and eventually hydrocephalus developed and the fetus died without the diagnosis of FMAIT being considered. Subsequent pregnancies in the two women were also affected by FMAIT, but prenatal treatment, predominantly with serial fetal platelet transfusions, resulted in a successful outcome in both cases. These observations suggest that FMAIT should be suspected if there is isolated fetal hydrocephalus, unexplained fetal anaemia, or recurrent miscarriages. The accurate diagnosis of FMAIT is important because recent advances in prenatal management can improve the outcome of subsequently affected pregnancies. KEY WORDS: neonatal alloimmune thrombocytopenia; intrauterine haemorrhage; hydrocephalus INTRODUCTION (Mueller-Eckhardt et al., 1989; Kaplan et al., Fetomaternal incompatibility for human platelet 1991). In these studies, 1&15 per cent of infants antigens (HPAs) may cause maternal alloimmuni- had no bleeding manifestations but the remainder zation and fetal and neonatal thrombocytopenia had purpura, bruising, andor more severe haem- (Kaplan et al., 1991; Waters et al., 1991; Goldman orrhage.
    [Show full text]
  • Haematological Abnormalities in Mitochondrial Disorders
    Singapore Med J 2015; 56(7): 412-419 Original Article doi: 10.11622/smedj.2015112 Haematological abnormalities in mitochondrial disorders Josef Finsterer1, MD, PhD, Marlies Frank2, MD INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes.
    [Show full text]
  • SEED Haematology Sysmex Educational Enhancement and Development October 2012
    SEED Haematology Sysmex Educational Enhancement and Development October 2012 The red blood cell indices The full blood count has been used in conjunction with the traditional red The complete blood count (CBC) is central to clinical deci- cell indices in order to narrow down the possible causes sion making. This makes it one of the commonest laboratory of anaemia in an individual patient. investigations performed worldwide. Whilst the definition of what constitutes an CBC is influenced by the number Impedance technology and type of parameters measured by different haematology The RBC, HCT and MCV are all closely interrelated as they analysers, the traditional red cell indices that are widely are derived from information obtained from the passage used to classify anaemias are common to all. of cells through the aperture of the impedance channel of an automated haematology analyser. The impedance The laboratory approach to anaemia technology is based on the principle that an electrical field, Anaemia is an extremely common global healthcare prob- created between two electrodes of opposite charge, can lem. However, anaemia is merely a symptom which can be used to count and determine the size of cells. Blood result from a multitude of causes. Effective treatment is cells are poor conductors of electricity. The diluent in which only possible if the underlying cause is correctly identified. they are suspended as they pass through the aperture To this end, several classification systems have been devis- during counting is an isotonic solution which is a good ed. The most useful and widely used classification system conductor of electricity.
    [Show full text]
  • The Widespread Application of Red Cell Survival Sive Red
    CLINICAL DETERMINATION OF THE SITES OF RED CELL SEQUESTRATION IN HEMOLYTIC ANEMIAS1 By JAMES H. JANDL, MORTIMER S. GREENBERG, ROBERT H. YONEMOTO, AND WILLIAM B. CASTLE (From the Thorndike Memorial Laboratory and Second and Fourth (Harvard), Medical Services Boston City Hospital, and the Department of Medicine, Harvard Medical School, Boston, Mass.) (Submitted for publication January 30, 1956; accepted April 3, 1956) The widespread application of red cell survival greater than that of other tissues even when cor- techniques has revealed the importance of exces- rection was made for the Cr5l activity of the re- sive red cell destruction in the pathologic physi- sidual red cells. Moreover, the radioactivity of ology of many of the anemias. An increasing ar- the packed red cells removed from the spleen ex- ray of in vitro methods for detecting red cell or ceeded that of a comparable sample of packed red serum abnormalities has provided insight into the cells from the peripheral blood. In order to in- in vivo mechanisms underlying some of these proc- vestigate the possibility that Cr51-labelled red cell esses. In certain disease states the presence of deposition could be determined by measuring body visible or physically measurable alterations of the surface radioactivity, several questions required red cells has permitted detection of the sites and exploration: 1) Are the emanations of Cr5 suit- to some extent of the mechanisms of sequestration able for external body scanning at safe dosage of these cells. Such valuable observations have levels? 2) Does the site of tissue deposition of been made upon pathologic material from patients Cr65 following the intravenous injection of Cr51- with congenital hemolytic anemia (1-5) and labelled red cells necessarily indicate the site of sickle cell anemia (1, 5-7).
    [Show full text]
  • Hemolytic Disease of the Newborn
    & Throm gy b o o l e o t m Journal of Hematology & a b o m l e i c H D f Nandyal, J Hematol Thrombo Dis 2015, 3:2 o i s l e a Thromboembolic Diseases ISSN: 2329-8790 a n s r DOI: 10.4172/2329-8790.1000203 e u s o J Mini Review Open Access Hemolytic Disease of the Newborn Raja R Nandyal* Department of Hematology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA *Corresponding author: Raja R Nandyal, Department of Hematology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA, Tel: 0114055351615; E-mail: [email protected] Rec date: Mar 13, 2015, Acc date: Apr 14, 2015, Pub date: Apr 20, 2015 Copyright: © 2015 Nandyal RR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract Hemolytic disease of the newborn (HDN), with high potential for increased fetal loss is less common now, due to the universal screening for iso-sensitization and also because of appropriate use of antenatal anti-RhD antibody prophylaxis. There are other non-RhD antibodies that can cause HDN. In US, we occasionally encounter a highly sensitized fetus with significant morbidity and mortality. In utero RBC transfusions and Intravenous Immunoglobulin (IVIG) therapy for such an infant are effective to some extent, in the management of HDN. Partial exchange transfusions (immediately after the delivery) and double volume exchange transfusions are rarely but still, needed as rescue modes.
    [Show full text]
  • Rhesus Haemolytic Disease Is Entirely Preventable – but Many Babies Still Die (Or Suffer Disabilities) Because of It! DO NOT LET THIS HAPPEN!
    Rhesus Haemolytic Disease is entirely preventable – BUT many babies still die (or suffer disabilities) because of it! DO NOT LET THIS HAPPEN! FACT: Rhesus Haemolytic Disease is a condition caused by the incompatibility between the blood of the mother and that of her fetus. If the mother is Rh-negative and the fetus is Rh-positive, when the baby is born some of the fetus’ Rh-positive red blood cells may enter the mother’s blood stream. When this happens they sensitise the Rh(D)-negative mother and in subsequent Rh(D)-positive pregnancies, this may evoke a secondary immunological response with a rapid and important production of antibodies against the D antigen. Rh incompatibility usually does not cause problems during the first pregnancy, since the baby is born before antibodies develop. The condition is, therefore, more likely to cause problems in the second and subsequent pregnancies. RISK: When it occurs there is a substantial risk to the fetus THE CURRENT BURDEN OF RH DISEASE TODAY of still birth or disabilities, including kerniterus (which causes deafness or cerebral palsy), fetal hydrops, fetal anemia and jaundice. Current burden of disease: • 50,000 stillbirths 50 years ago the solution was found –and yet today it • 114,000 neonatal deaths is still common because approximatelyhalf of all at- • 40,000 kernicterus and risk women around the world still do not receive basic cerebral palsy • 60,000 kernicterus and protective therapy often because the required infusion is hearing loss not available or simply because the need to provide this essential protection has been forgotten! PREVENTION: Prevention of this condition can be reliably provided by providing an intramuscular injection of anti-D immunoglobulin immediately after delivery – and also as a prophylactic during 28 – 32 week period of pregnancy.
    [Show full text]
  • Correlation Between the Rhd Genotyping and Rhd Serotyping in Isoimmunized Pregnancies
    The Egyptian Journal of Medical Human Genetics (2011) 12, 127–133 Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com ORIGINAL ARTICLE Correlation between the RhD genotyping and RhD serotyping in isoimmunized pregnancies Sahar M. Nour El Din a,*, Ahmed R.M. ARamy b, Mohamed S. Ali b a Medical Genetics Center, Ain-Shams University, Cairo, Egypt b Gynecological and Obstetric Department, Faculty of medicine, Ain Shams University, Cairo, Egypt Received 2 January 2011; accepted 3 April 2011 Available online 5 July 2011 KEYWORDS Abstract Alloimmunisation was one of the most important causes of perinatal mortality and mor- Maternal alloimmunization; bidity by the middle of the last century. The objective of the present study was to investigate the Rhesus; presence of the RHD gene in fetal cells (amniocytes) obtained from amniotic fluid by genotyping RHD; to compare it with the RhD serotyping. Also to correlate the presence of RhD gene with the neo- Isoimmunization; natal outcome. This work was carried out at Maternity hospital and Medical Genetics center, while Hydrops fetalis; PCR testing was done at the Medical Research center, Faculty of Medicine, Ain Shams University Fetus; in the period from 2008 to 2010. The present study included recruiting of 20 RhD negative (sensi- Rh negative tized to the RhD antigen) pregnant mothers. The entire study group was subjected to complete general, obstetric and a detailed obstetric ultrasonographic examination. Rh typing and indirect Coomb’s test were also done. Amniocentesis was performed with a 20-gauge needle under contin- uous ultrasound guidance.
    [Show full text]