The Evolution of Parasitism in Nematoda

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Parasitism in Nematoda SUPPLEMENT ARTICLE S26 The evolution of parasitism in Nematoda MARK BLAXTER* and GEORGIOS KOUTSOVOULOS Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK (Received 19 February 2014; revised 16 April 2014; accepted 16 April 2014; first published online 25 June 2014) SUMMARY Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated. Key words: Nematoda, nematodes, parasitism, evolution, genome, symbiont, Wolbachia, phylogeny, horizontal gene transfer. THE DIVERSITY OF THE NEMATODA medical and veterinary science. In this paper we discuss the changes in our understanding of the Nematoda is an ancient and biologically diverse diversity and relationships of nematodes, and of the phylum of moulting animals. They range in size biology of their parasitic habits, that have been from 0·2 mm to over 6 m, and can be found in most brought about by study of their genes and, increas- habitats, including within and on host animals and ingly, genomes. plants (Blaxter and Denver, 2012). In many marine Nematoda are part of Ecdysozoa, a superphylum and terrestrial sediments they are the most abundant of animals first defined through analyses of mole- group in terms of individuals (Platonova and Gal’tsova, cular markers (Aguinaldo et al. 1997). Support for 1976), and while only approximately 23000 species Ecdysozoa as distinct from other groupings of proto- have been described (J. Hallan, unpublished; https:// stome taxa is less strong from analyses of morpho- insects.tamu.edu/research/collection/hallan/), the true logical characters (Nielsen, 2001). Ecdysozoan phyla species-level diversity may be 1 million or more are characterized by the presence of a cuticle that is (Lambshead, 1993). Most terrestrial plants and larger periodically moulted during the life cycle, though the animals are associated with at least one species of specifics of the molecular nature of the cuticle and the parasitic nematode, and most of the human popu- orchestration of ecdysis differ between phyla. Other lation experiences nematode parasitism during their shared features adduced as evidence of relatedness lives (with perhaps one quarter to one third of the between these phyla include an absence of cilia in global population infected at any time). Estimates of adults, and in many members the presence of a the number of species of parasitic nematode per host triradiate pharynx. The Ecdysozoa in turn comprises suggest that there may be of the order of 25000 two groups, the Panarthropoda (phyla Tardigrada, nematode parasites just of vertebrates, most of which Onychophora and Arthropoda) and Cycloneuralia remain undescribed (Dobson et al. 2008). Nematodes (Nematoda, Nematomorpha, Priapulida, Kinorhyncha are thus important regulators of plant and animal and Loricifera). Within Cycloneuralia, which may be production. Understanding the evolutionary origins paraphyletic with respect to Panarthropoda, Nematoda of plant and animal parasitism, and the mechanisms are consistently placed as sisters to Nematomorpha in by which parasites locate and invade their hosts, morphological and molecular analyses (Schmidt- avoid host immunity, and acquire nutrition, are Rhaesa, 1997; Dunn et al. 2008). important goals for not only basic, but also for Nematomorpha are a fascinating group of obligate * Corresponding author: The Ashworth Laboratories, parasites of terrestrial (Gordioidea) and marine The King’s Buildings, Edinburgh EH9 3JT, UK. (Nectonematoidea) arthropods. These ‘horsehair E-mail: [email protected]. worms’ have a parasitoid life cycle, with the larval Parasitology (2015), 142, S26–S39. © Cambridge University Press 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/ doi:10.1017/S0031182014000791 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.58, on 28 Sep 2021 at 03:40:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182014000791 The evolution of parasitism in Nematoda S27 Ecosystem and Origins of Genomes Genomes Percentage of A Rhabditina Lifecycle strategy Parasitism Published Ongoing named species Rhabditomorpha 1* 1,2* V Bunonematomorpha 7 >30 13 Diplogasteromorpha 2* Brevibuccidae Tylenchina Drilonematomorpha 3 Panagrolaimomorpha 10 4 3 Rhabditida IV Cephalobomorpha 5 >40 17 10, 11, 12 11 Tylenchomorpha 5* 1* 12 Myolaimina Ascaridomorpha Spiruromorpha Spirurina Rhigonematomorpha 6 5 15 26 Oxyuridomorpha 7 4 III Gnathostomatomorpha Dracunculoidea Teratocephalidae 7 Plectida Araeolaimida 0 3 15 5bc 8 Chromadoria Monhysterida Desmodorida Chromadorida Enoplinae (part) Anticomidae Leptosomatidae Anoplostomatidae Oncholaimina Enoplida Oxystominidae Tripyloididae Trefusiida Enoplia Ironina (part) 9 0 1 21 II Alaimina 1 Campydorina Tripylina Tobrilina (part) Prismatolaimoidea Triplonchida Diptherophorina 2 Trichinellida 5 Dorylaimia I Dioctophymatida Mononchida 2 2 7 Mermithida 10 Dorylaimida 3* 19 ~100 terrestrial plant parasite terrestrial/freshwater vertebrate parasite invertebrate parasite freshwater invertebrate association marine microbivore or predator Caenorhabditis briggsae B Caenorhabditis elegans Rhabditomorpha Caenorhabditis angraria Haemonchus contortus V Pristionchus pacificus Diplogasteromorpha Meloidogyne incognita Meloidogyne hapla Bursaphelenchus xylophilus Tylenchomorpha IV Pseudaphelenchus vindai Strongyloides ratti Panagrolaimomorpha Dirofilaria immitis Onchocerca ochengi Litomosoides sigmodontis Loa loa Spiruromorpha Brugia malayi C Wuchereria bancrofti III Ascaris suum Ascaridomorpha Anguillicoloides crassus Dracunculoidea Laxus oneistus Chromadorida Prionchulus punctatus Mononchida Romanomermis culicivorax Mermithida I Trichinella spiralis Trichinellida II Enoplus brevis Enoplinae Milnesium tardigradum Tetranychus urticae Outgroup Drosophila melanogaster 0.1 Bombyx mori species Fig. 1. The phylogenetic structure of the Nematoda and the origins of parasitism (A) A cartoon of the phylogenetic structure of the Nematoda, based on nuclear small subunit ribosomal RNA analyses and interpretation of taxon relationships derived from morphology (De Ley and Blaxter, 2004; Blaxter and Denver, 2012). Taxon systematic Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.58, on 28 Sep 2021 at 03:40:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182014000791 Mark Blaxter and Georgios Koutsovoulos S28 stages residing within the body cavities of their 2002, 2004). In nSSU analyses the branching order of arthropod hosts, which they kill when they emerge. these three groups is unresolved, though there are The adult sexual stages are free-living in pelagic hints that Enoplia may be the earliest-branching of (Nectonematoidea) or sediment (Gordioidea) habi- the three (van Megen et al. 2009; Blaxter et al. 2014). tats. Infection of the next host is by ingestion of eggs, The inability of nSSU to robustly distinguish the often glued to vegetation eaten by the hosts (Hanelt branching order and thus the root of the phylum is and Janovy, 1999). The generalized life cycle of due to lack of strong signal, exacerbated by the nematomorphs is very similar to that of mermithid phylogenetic distance to the nearest outgroup taxa nematodes, which also have marine and terrestrial (other Ecdysozoa, which likely last shared a common members, and which also infect their hosts as larvae ancestor well before the Cambrian, over 540 My ago). but have free-living adult stages. The placement of It is generally argued that Nematoda has a marine a phylum wherein all members are parasites as sister origin (see Fig. 1A). The Enoplia are largely marine, to all of Nematoda raises the interesting question of and mostly free-living. They are the commonest whether the ancestor to all nematodes was a parasite nematodes in marine sediments, and dominate deep- (with biology similar to nematomorphs or mer- sea ecosystems where they feed on diatoms and mithids), and that the extant free-living groups in marine algae. Members of Enoplia are also found in
Recommended publications
  • Incorporating Genomics Into the Toolkit of Nematology
    Journal of Nematology 44(2):191–205. 2012. Ó The Society of Nematologists 2012. Incorporating Genomics into the Toolkit of Nematology 1 2 1,* ADLER R. DILLMAN, ALI MORTAZAVI, PAUL W. STERNBERG Abstract: The study of nematode genomes over the last three decades has relied heavily on the model organism Caenorhabditis elegans, which remains the best-assembled and annotated metazoan genome. This is now changing as a rapidly expanding number of nematodes of medical and economic importance have been sequenced in recent years. The advent of sequencing technologies to achieve the equivalent of the $1000 human genome promises that every nematode genome of interest will eventually be sequenced at a reasonable cost. As the sequencing of species spanning the nematode phylum becomes a routine part of characterizing nematodes, the comparative approach and the increasing use of ecological context will help us to further understand the evolution and functional specializations of any given species by comparing its genome to that of other closely and more distantly related nematodes. We review the current state of nematode genomics and discuss some of the highlights that these genomes have revealed and the trend and benefits of ecological genomics, emphasizing the potential for new genomes and the exciting opportunities this provides for nematological studies. Key words: ecological genomics, evolution, genomics, nematodes, phylogenetics, proteomics, sequencing. Nematoda is one of the most expansive phyla docu- piece of knowledge we can currently obtain for any mented with free-living and parasitic species found in particular life form (Consortium, 1998). nearly every ecological niche(Yeates, 2004). Traditionally, As in many other fields of biology, the nematode C.
    [Show full text]
  • 1 References Cited in the U.S. Fish and Wildlife Service American Eel
    References Cited1 in the U.S. Fish and Wildlife Service American Eel Biological Species Report and ESA 12-Month Petition Finding Form Docket Number FWS–HQ–ES–2015–0143 August 2015 Aarestrup, K., and coauthors. 2009. Oceanic Spawning Migration of the European eel (Anguilla anguilla). Science 325(5948):1660. Aarestrup, K., and coauthors. 2010. Survival and progression rates of large European silver eel Anguilla anguilla in late freshwater and early marine phases. Aquatic Biology 9(3):263–270. Able, K. W., and M. P. Fahay. 2010. Ecology of Estuarine Fishes, Chapter 17: Anguilla rostrata (Leseur). Pages 139–144. Johns Hopkins University Press. Aieta, A. E., and K. Oliveira. 2009. Distribution, prevalence, and intensity of the swim bladder parasite Anguillicola crassus in New England and eastern Canada. Diseases of Aquatic Organisms 84(3):229–235. Albert, V., B. Jonsson, and L. Bernatchez. 2006. Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Molecular Ecology 15(7):1903–1916. Als, T. D., and coauthors. 2011. All roads lead to home: panmixia of European eel in the Sargasso Sea. Molecular Ecology 20(7):1333–1346. Amaral, S. V., F. C. Winchell, B. J. McMahon, and D. A. Dixon. 2003. Evaluation of angled bar racks and louvers for guiding silver phase American eels. Pages 367–376 in D.A. Dixon, editor. Biology, management, and protection of catadromous eels. American Fisheries Society Symposium 33. American Rivers. 2013. 63 dams removed to restore rivers in 2012. Press release, 2013. 87 pages. Aoyama, J. 2003. Origin and evolution of the freshwater eels, genus Anguilla.
    [Show full text]
  • The Transcriptome of the Invasive Eel Swimbladder Nematode Parasite
    Heitlinger et al. BMC Genomics 2013, 14:87 http://www.biomedcentral.com/1471-2164/14/87 RESEARCH ARTICLE Open Access The transcriptome of the invasive eel swimbladder nematode parasite Anguillicola crassus Emanuel Heitlinger1,2,4*, Stephen Bridgett3, Anna Montazam3, Horst Taraschewski1 and Mark Blaxter2,3 Abstract Background: Anguillicola crassus is an economically and ecologically important parasitic nematode of eels. The native range of A. crassus is in East Asia, where it infects Anguilla japonica, the Japanese eel. A. crassus was introduced into European eels, Anguilla anguilla, 30 years ago. The parasite is more pathogenic in its new host than in its native one, and is thought to threaten the endangered An. anguilla across its range. The molecular bases for the increased pathogenicity of the nematodes in their new hosts is not known. Results: A reference transcriptome was assembled for A. crassus from Roche 454 pyrosequencing data. Raw reads (756,363 total) from nematodes from An. japonica and An. anguilla hosts were filtered for likely host contaminants and ribosomal RNAs. The remaining 353,055 reads were assembled into 11,372 contigs of a high confidence assembly (spanning 6.6 Mb) and an additional 21,153 singletons and contigs of a lower confidence assembly (spanning an additional 6.2 Mb). Roughly 55% of the high confidence assembly contigs were annotated with domain- or protein sequence similarity derived functional information. Sequences conserved only in nematodes, or unique to A. crassus were more likely to have secretory signal peptides. Thousands of high quality single nucleotide polymorphisms were identified, and coding polymorphism was correlated with differential expression between individual nematodes.
    [Show full text]
  • The Phylogenetics of Anguillicolidae (Nematoda: Anguillicolidea), Swimbladder Parasites of Eels
    UC Davis UC Davis Previously Published Works Title The phylogenetics of Anguillicolidae (Nematoda: Anguillicolidea), swimbladder parasites of eels Permalink https://escholarship.org/uc/item/3017p5m4 Journal BMC Evolutionary Biology, 12(1) ISSN 1471-2148 Authors Laetsch, Dominik R Heitlinger, Emanuel G Taraschewski, Horst et al. Publication Date 2012-05-04 DOI http://dx.doi.org/10.1186/1471-2148-12-60 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The phylogenetics of Anguillicolidae (Nematoda: Anguillicoloidea), swimbladder parasites of eels Laetsch et al. Laetsch et al. BMC Evolutionary Biology 2012, 12:60 http://www.biomedcentral.com/1471-2148/12/60 Laetsch et al. BMC Evolutionary Biology 2012, 12:60 http://www.biomedcentral.com/1471-2148/12/60 RESEARCH ARTICLE Open Access The phylogenetics of Anguillicolidae (Nematoda: Anguillicoloidea), swimbladder parasites of eels Dominik R Laetsch1,2*, Emanuel G Heitlinger1,2, Horst Taraschewski1, Steven A Nadler3 and Mark L Blaxter2 Abstract Background: Anguillicolidae Yamaguti, 1935 is a family of parasitic nematode infecting fresh-water eels of the genus Anguilla, comprising five species in the genera Anguillicola and Anguillicoloides. Anguillicoloides crassus is of particular importance, as it has recently spread from its endemic range in the Eastern Pacific to Europe and North America, where it poses a significant threat to new, naïve hosts such as the economic important eel species Anguilla anguilla and Anguilla rostrata. The Anguillicolidae are therefore all potentially invasive taxa, but the relationships of the described species remain unclear. Anguillicolidae is part of Spirurina, a diverse clade made up of only animal parasites, but placement of the family within Spirurina is based on limited data.
    [Show full text]
  • In Caenorhabditis Elegans
    Identification of DVA Interneuron Regulatory Sequences in Caenorhabditis elegans Carmie Puckett Robinson1,2, Erich M. Schwarz1, Paul W. Sternberg1* 1 Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America, 2 Department of Neurology and VA Greater Los Angeles Healthcare System, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America Abstract Background: The identity of each neuron is determined by the expression of a distinct group of genes comprising its terminal gene battery. The regulatory sequences that control the expression of such terminal gene batteries in individual neurons is largely unknown. The existence of a complete genome sequence for C. elegans and draft genomes of other nematodes let us use comparative genomics to identify regulatory sequences directing expression in the DVA interneuron. Methodology/Principal Findings: Using phylogenetic comparisons of multiple Caenorhabditis species, we identified conserved non-coding sequences in 3 of 10 genes (fax-1, nmr-1, and twk-16) that direct expression of reporter transgenes in DVA and other neurons. The conserved region and flanking sequences in an 85-bp intronic region of the twk-16 gene directs highly restricted expression in DVA. Mutagenesis of this 85 bp region shows that it has at least four regions. The central 53 bp region contains a 29 bp region that represses expression and a 24 bp region that drives broad neuronal expression. Two short flanking regions restrict expression of the twk-16 gene to DVA. A shared GA-rich motif was identified in three of these genes but had opposite effects on expression when mutated in the nmr-1 and twk-16 DVA regulatory elements.
    [Show full text]
  • The Role of Carbon Dioxide in Nematode Behaviour and Physiology Cambridge.Org/Par
    Parasitology The role of carbon dioxide in nematode behaviour and physiology cambridge.org/par Navonil Banerjee and Elissa A. Hallem Review Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA Cite this article: Banerjee N, Hallem EA Abstract (2020). The role of carbon dioxide in nematode behaviour and physiology. Parasitology 147, Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic 841–854. https://doi.org/10.1017/ and free-living nematodes. Many nematodes show context-dependent, experience-dependent S0031182019001422 and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also Received: 11 July 2019 show a wide range of physiological responses to CO . Here, we review the diverse responses Revised: 4 September 2019 2 Accepted: 16 September 2019 of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and First published online: 11 October 2019 neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive con- text-dependent and experience-dependent responses of nematodes to CO2. Key words: Carbon dioxide; chemotaxis; C. elegans; hookworms; nematodes; parasitic nematodes; sensory behaviour; Strongyloides Introduction Author for correspondence: Carbon dioxide (CO2) is an important sensory cue for animals across diverse phyla, including Elissa A. Hallem, E-mail: [email protected] Nematoda (Lahiri and Forster, 2003; Shusterman and Avila, 2003; Bensafi et al., 2007; Smallegange et al., 2011; Carrillo and Hallem, 2015). While the CO2 concentration in ambient air is approximately 0.038% (Scott, 2011), many nematodes encounter much higher levels of CO2 in their microenvironment during the course of their life cycles.
    [Show full text]
  • American Eel Biological Species Report
    AMERICAN EEL BIOLOGICAL SPECIES REPORT Supplement to: Endangered and Threatened Wildlife and Plants; 12-Month Petition Finding for the American Eel (Anguilla rostrata) Docket Number FWS-HQ-ES-2015-0143 U.S. Fish and Wildlife Service, Region 5 June 2015 This page blank for two-sided printing ii U.S. Fish and Wildlife Service, Northeast Region AMERICAN EEL BIOLOGICAL SPECIES REPORT Steven L. Shepard U.S. Fish and Wildlife Service, Maine Field Office 17 Godfrey Drive, Suite 2 Orono, Maine 04473-3702 [email protected] For copies of this report, contact: U.S. Fish and Wildlife Service Hadley, MA 01035 http://www.fws.gov/northeast/newsroom/eels.html http://www.regulations.gov This American Eel Biological Species Report has been prepared by the U.S. Fish and Wildlife Service (Service) in support of a Status Review pursuant to the Endangered Species Act, 16 U.S.C. §§ 1531, et seq. This report reviews the best available information, including published literature, reports, unpublished data, and expert opinions. The report addresses current American eel issues in contemporary time frames. The report is not intended to provide definitive statements on the subjects addressed, but rather as a review of the best available information and ongoing investigations. The report includes updates to, and relevant material from, the Service’s 2007 American Eel Status Review. The report was published in January 2015 following peer review. The report was revised to correct typographical and minor factual errors and reissued in June 2015. With thanks to Krishna Gifford, Martin Miller, James McCleave, Alex Haro, Tom Kwak, David Richardson, Andy Dolloff, Kate Taylor, Wilson Laney, Sheila Eyler, Mark Cantrell, Rosemarie Gnam, Caitlin Snyder, AJ Vale, Steve Minkkinen, Matt Schwarz, Sarah LaPorte, Angela Erves, Heather Bell, the ASMFC American Eel Technical Committee, and the USFWS American Eel Working Group.
    [Show full text]
  • The Distribution of Lectins Across the Phylum Nematoda: a Genome-Wide Search
    Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S1 of S12 Supplementary Materials: The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search Lander Bauters, Diana Naalden and Godelieve Gheysen Figure S1. Alignment of partial calreticulin/calnexin sequences. Amino acids are represented by one letter codes in different colors. Residues needed for carbohydrate binding are indicated in red boxes. Sequences containing all six necessary residues are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S2 of S12 Figure S2. Alignment of partial legume lectin-like sequences. Amino acids are represented by one letter codes in different colors. EcorL is a legume lectin originating from Erythrina corallodenron, used in this alignment to compare carbohydrate binding sites. The residues necessary for carbohydrate interaction are shown in red boxes. Nematode lectin-like sequences containing at least four out of five key residues are indicated with an asterisk. Figure S3. Alignment of possible Ricin-B lectin-like domains. Amino acids are represented by one letter codes in different colors. The key amino acid residues (D-Q-W) involved in carbohydrate binding, which are repeated three times, are boxed in red. Sequences that have at least one complete D-Q-W triad are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S3 of S12 Figure S4. Alignment of possible LysM lectins. Amino acids are represented by one letter codes in different colors. Conserved cysteine residues are marked with an asterisk under the alignment. The key residue involved in carbohydrate binding in an eukaryote is boxed in red [1].
    [Show full text]
  • NEAT (North East Atlantic Taxa): Scandinavian Marine Nematoda E
    1 E. microstomus Dujardin,1845 NEAT (North East Atlantic Taxa): * Sp. inq. Scandinavian marine Nematoda Check-List Engl. Channel compiled at TMBL (Tjärnö Marine Biological Laboratory) by: E. oculatus (Ørsted,1844) Hans G. Hansson 1989-06-07 / small revisions until yuletide 1994, when it for the first time was published on Internet. = Anguillula oculata Ørsted,1844 Reformatted to a pdf file March,1996 and again published August 1998. * Sp. inq. Öresund Email address of compiler: [email protected] E. paralittoralis Wieser,1953 Postal address: Tjärnölaboratoriet, S-452 96 Strömstad, Sweden S Britain, Chile Citation suggested: Hansson, H.G. (Comp.), NEAT (North East Atlantic Taxa): Scandinavian marine Nematoda E. quadridentatus Berlin,1853 Check-List. Internet pdf Ed., Aug. 1998. [http://www.tmbl.gu.se]. = Enoplostoma hirtum Marion,1870 (™ of Enoplostoma Marion,1870 - Mediterranean) Scotland, S Britain, Mediterranean, Black Sea Denotations: (™) = "Genotype" @ = Association * = General note E. schulzi Gerlach,1952 = Ruamowhitia orae Yeatee,1967 N.B.: This is one of several preliminary check-lists, covering S. Scandinavian marine animal (and partly marine = Ruamowhitia halopila Guirado,1975 protoctist) taxa. Some financial support from (or via) NKMB (Nordiskt Kollegium för Marin Biologi), during the last Kieler Bucht, S Britain, Biscay, Mediterranean years of the existence of this organisation (until 1993), is thankfully acknowledged. The primary purpose of these E. serratus Ditlevsen,1926 checklists is to facilitate for everyone, trying to identify organisms from the area, to know which species that earlier Iceland have been encountered there, or in neighbouring areas. A secondary purpose is to facilitate for non-experts to find as correct names as possible for organisms, including names of authors and years of description.
    [Show full text]
  • Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae
    Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Vladislav Susoy aus Berezniki, Russland Tübingen 2015 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 5 November 2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ralf J. Sommer 2. Berichterstatter: Prof. Dr. Heinz-R. Köhler 3. Berichterstatter: Prof. Dr. Hinrich Schulenburg Acknowledgements I am deeply appreciative of the many people who have supported my work. First and foremost, I would like to thank my advisors, Professor Ralf J. Sommer and Dr. Matthias Herrmann for giving me the opportunity to pursue various research projects as well as for their insightful scientific advice, support, and encouragement. I am also very grateful to Matthias for introducing me to nematology and for doing an excellent job of organizing fieldwork in Germany, Arizona and on La Réunion. I would like to thank the members of my examination committee: Professor Heinz-R. Köhler and Professor Hinrich Schulenburg for evaluating this dissertation and Dr. Felicity Jones, Professor Karl Forchhammer, and Professor Rolf Reuter for being my examiners. I consider myself fortunate for having had Dr. Erik J. Ragsdale as a colleague for several years, and more than that to count him as a friend. We have had exciting collaborations and great discussions and I would like to thank you, Erik, for your attention, inspiration, and thoughtful feedback. I also want to thank Erik and Orlando de Lange for reading over drafts of this dissertation and spelling out some nuances of English writing.
    [Show full text]
  • JOURNAL of NEMATOLOGY Cultivation of Caenorhabditis
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2021-036 e2021-36 | Vol. 53 Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone Tho Son Le1,*, T. T. Hang Nguyen1, Bui Thi Mai Huong1, H. Gam Nguyen1, B. Hong Ha1, Van Sang Abstract 2 3 Nguyen , Minh Hung Nguyen , The study of species biodiversity within the Caenorhabditis genus of 4 Huy-Hoang Nguyen and nematodes would be facilitated by the isolation of as many species 5, John Wang * as possible. So far, over 50 species have been found, usually 1College of Forestry Biotechnology, associated with decaying vegetation or soil samples, with many Vietnam National University of from Africa, South America and Southeast Asia. Scientists based in Forestry, Hanoi, Vietnam. these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful 2Faculty of Biology, VNU University for understanding the natural history of these species. However, of Science, Vietnam National severely limited research budgets are often a constraint for these University, Hanoi, Vietnam. local scientists. In this study, we aimed to find a more economical, 3Center for Molecular Biology, alternative growth media to rear Caenorhabditis and related species. Institute of Research and We tested 25 media permutations using cheaper substitutes for the Development, Duy Tan University, reagents found in the standard nematode growth media (NGM) and Da Nang, Vietnam. found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These 4Institute of Genome Research, new media should facilitate the isolation and characterization of Vietnam Academy of Science and Caenorhabditis and other free-living nematodes for the researchers Technology, Hanoi, Vietnam.
    [Show full text]
  • Downloading the Zinc-Finger Motif from the Gag Protein Must Have Assembly Files and Executing the Ipython Notebook Cells Occurred Independently Multiple Times
    The evolution of tyrosine-recombinase elements in Nematoda Amir Szitenberg1, Georgios Koutsovoulos2, Mark L Blaxter2 and David H Lunt1 1Evolutionary Biology Group, School of Biological, Biomedical & Environmental Sciences, University of Hull, Hull, HU6 7RX, UK 2Institute of Evolutionary Biology, The University of Edinburgh, EH9 3JT, UK [email protected] Abstract phylogenetically-based classification scheme. Nematode Transposable elements can be categorised into DNA and model species do not represent the diversity of RNA elements based on their mechanism of transposable elements in the phylum. transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite Keywords: Nematoda; DIRS; PAT; transposable sharing characteristics with both DNA and RNA elements; phylogenetic classification; homoplasy; elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla Introduction but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. Transposable elements We explored the diversity of YREs in Nematoda by Transposable elements (TE) are mobile genetic elements sampling broadly across the phylum and including 34 capable of propagating within a genome and potentially genomes representing the three classes within transferring horizontally between organisms Nematoda. We developed a method to isolate and (Nakayashiki 2011). They typically constitute significant classify YREs based on both feature organization and proportions of bilaterian genomes, comprising 45% of phylogenetic relationships in an open and reproducible the human genome (Lander et al. 2001), 22% of the workflow. We also ensured that our phylogenetic Drosophila melanogaster genome (Kapitonov and Jurka approach to YRE classification identified truncated and 2003) and 12% of the Caenorhabditis elegans genome degenerate elements, informatively increasing the (Bessereau 2006).
    [Show full text]