Pteris ×Caridadiae (Pteridaceae), a New Hybrid Fern from Costa Rica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fern Classification
16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed. -
Spore Morphology of Taenitis, Syngramma and Austrogramme Species (Pteridoideae, Pteridaceae) from South-Eastern Asia
Turczaninowia 21 (3): 5–11 (2018) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.21.3.1 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.394.7:581.4(59) Spore morphology of Taenitis, Syngramma and Austrogramme species (Pteridoideae, Pteridaceae) from South-Eastern Asia A. V. Vaganov1, I. I. Gureyeva2, A. I. Shmakov1, A. A. Kuznetsov2, R. S. Romanets2 1 South-Siberian Botanical Garden, Altai State University, pr. Lenina, 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, pr. Lenina, 36, Tomsk, 634050, Russia. E-mail: [email protected] Keywords: Austrogramme, Pteridaceae, Pteridoideae, scanning electronic microscopy (SEM), spore morphology, Syngramma, Taenitis. Summary. A comparative study of spores of seven species: Taenitis blechnoides (Willd.) Sw., T. hookeri (C. Chr.) Holttum, T. pinnata (J. Sm.) Holttum, Syngramma alismifolia (Presl) J. Sm., S. lobbiana (Hook.) J. Sm., S. quinata (Hook.) Carruth., and Austrogramme boerlageana (Alderw.) Hennipman from South-Eastern Asia was performed us- ing the method of scanning electronic microscopy (SEM). Spores of all examined species are trilete, tetrahedral or tet- rahedral-globose. Spores of Syngramma and Austrogramme are very similar to each other in shape and ornamentation. Ornamentation of both sides of spore is similar, verrucate (microverrucate), surface covered by rodlets and granulate deposits. Spores of Taenitis species with conspicuous cingulum (Taenitis blechnoides) or without it, ornamentation of both faces of spore could be tuberculate or baculate. Spores of Taenitis hookeri and Taenitis pinnata demonstrate tendency to forming of comissural ridges. Spore size of all studied species is close: equatorial diameter of spores of Taenitis species varies within 24–43 μm, those for Syngramma species is 29.8–35.5 μm, spores of Austrogramme boerlageana are smallest, their equatorial diameter varies within 22.5–29.4 μm. -
A Taxonomic Study on Pteris L. (Pteridaceae) of Bangladesh
Bangladesh J. Plant Taxon. 28(1): 131‒140, 2021 (June) https://doi.org/10.3329/bjpt.v28i1.54213 © 2021 Bangladesh Association of Plant Taxonomists A TAXONOMIC STUDY ON PTERIS L. (PTERIDACEAE) OF BANGLADESH 1 2 SHI-YONG DONG* AND A.K.M. KAMRUL HAQUE Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Keywords: Checklist; Misidentification; Morphology; Nomenclature; Taxonomy. Abstract Bangladesh lies in Indian subcontinent, an area rich in Pteris species. However, so far there is no modern account on the species diversity of Pteris in Bangladesh. Based on a thorough study of literature and limited specimens available to us, we currently recognize 15 species of Pteris in Bangladesh. Among these species, P. giasii is currently known only from Bangladesh; P. longipinnula, which has not been collected since 1858, was recently rediscovered in Sylhet. Pteris cretica, P. pellucida, P. quadriaurita var. quadriaurita, and P. quadriaurita var. setigera are excluded for the fern flora of Bangladesh. To facilitate the recognition of species, a key to species and brief notes for each species are provided. Introduction The genus Pteris L. (Pteridaceae) consists of about 250 species, being a natural group of terrestrial ferns across the world with relatively rich species in tropical, warm-temperate, and south-temperate areas (Tyron et al., 1990; PPG I, 2016). This group is well represented in East Asia with 85 species (Nakaike, 1982; Liao et al. 2013) and in Indian subcontinent with 57 species (Fraser-Jenkins et al., 2017). In comparison, other regions are not so rich with Pteris species. For example, there are 55 species in America (Tryon and Tryon, 1982), 39 in Indochina (Lindsay and Middleton, 2012; Phan, 2010), 24 in tropical Africa (Kamau, 2012), and only 10 in Australia (Kramer and McCarthy, 1998). -
Морфология Спор Некоторых Представителей Подсемейства Pteridoideae Семейства Pteridaceae А.В
НАУЧНЫЙ ЖУРНАЛ РАСТИТЕЛЬНЫЙ МИР АЗИАТСКОЙ РОССИИ Растительный мир Азиатской России, 2014, № 2(14), с. 29–36 h p://www.izdatgeo.ru УДК 582.394 МОРФОЛОГИЯ СПОР НЕКОТОРЫХ ПРЕДСТАВИТЕЛЕЙ ПОДСЕМЕЙСТВА PTERIDOIDEAE СЕМЕЙСТВА PTERIDACEAE А.В. Ваганов1, А.П. Шалимов1, Д.Н. Шауло2 1Алтайский государственный университет, 656049, Барнаул, просп. Ленина, 61, e-mail: [email protected] 2 Центральный сибирский ботанический сад СО РАН, 630090, Новосибирск, ул. Золотодолинская, 101, e-mail: [email protected] Методом сканирующей электронной микроскопии (СЭМ) проведено сравнительное исследование шес- ти представителей подсемейства Pteridoideae C. Chr. ex Crabbe, Jermy et Mickel семейства Pteridaceae E.D.M. Kirchn.: Jamesonia auriculata A.F. Tryon, Pteris aspericaulis Wallich ex J. Agardh, P. biaurita L., P. te ne ra Kaulf., P. umbro s a R. Br., Taenitis blechnoides (Willd.) Sw. В результате морфологических описаний выявлены признаки, позволяющие судить о принадлежности исследуемых видов к одному подсемейству – Pteridoideae. Ключевые слова: подсемейство Pteridoideae, семейство Pteridaceae, Pteris, Jamesonia, Taenitis, морфология спор, сканирующая электронная микроскопия (СЭМ). SPORE MORPHOLOGY OF SOME REPRESENTATIVES OF PTERIDACEAE SUBFAM. PTERIDOIDEAE A.V. Vaganov1, A.P. Shalimov1, D.N. Shaulo2 1Altai State University, 656049, Barnaul, Lenina str., 61, e-mail: [email protected] 2Central Siberian Botanical Garden, SB RAS, 630090, Novosibirsk, Zolotodolinskaya str., 101, e-mail: [email protected] Th e method of scanning electronic microscopy (SEM) carries out relative research of ten representatives of subfamily Pteridoideae C. Chr. ex Crabbe, Jermy et Mickel family Pteridaceae E.D.M. Kirchn.: Jamesonia auriculata A.F. Tryon, Pteris aspericaulis Wallich ex J. Agardh, P. biaurita L., P. te ne ra Kaulf., P. umbrosa R. Br., Taenitis blechnoides (Willd.) Sw. -
Flora of New Zealand Ferns and Lycophytes Pteridaceae Pj Brownsey
FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES PTERIDACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 30 – JUNE 2021 © Landcare Research New Zealand Limited 2021. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P. J. (Patrick John), 1948– Flora of New Zealand : ferns and lycophytes. Fascicle 30, Pteridaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z.: Manaaki Whenua Press, 2021. 1 online resource ISBN 978-0-947525-72-9 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand – Identification. I. Perrie, L. R. (Leon Richard). II. Title. III. Manaaki Whenua- Landcare Research New Zealand Ltd. UDC 582.394.742(931) DC 587.30993 DOI: 10.7931/dtkj-x078 This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2021: Pteridaceae. In: Breitwieser, I. (ed.) Flora of New Zealand — Ferns and Lycophytes. Fascicle 30. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/dtkj-x078 Date submitted: 10 Aug 2020; Date accepted: 13 Oct 2020; Date published: 8 June 2021 Cover image: Pteris macilenta. Adaxial surface of 2-pinnate-pinnatifid frond, with basal secondary pinnae on basal primary pinnae clearly stalked. Contents Introduction..............................................................................................................................................1 -
Spore Morphology of Onychium Ipii Ching (Pteridoideae, Pteridaceae)
Turczaninowia 20 (2): 56–63 (2017) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.20.2.5 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.394:581.4(510) Spore morphology of Onychium ipii Ching (Pteridoideae, Pteridaceae) A. V. Vaganov1, I. I. Gureyeva2, A. A. Kuznetsov2, A. I. Shmakov1, R. S. Romanets2 1South-Siberian Botanical Garden, Altai State University, prospect Lenina, 61, Barnaul, 656049, Russia E-mail: [email protected] 2Tomsk State University, prospect Lenina, 36, Tomsk, 634050, Russia. E-mail: [email protected] Key words: morphology of the spores, scanning electronic microscopy (SEM), Onychium ipii, Pteridaceae, Pteridoideae. Summary. The ultrastructure of the spore surface of Onychium ipii Ching (Pteridoideae, Pteridaceae) was investigated by using of scanning electron microscopy. Spores of Onychium ipii are trilete, tetrahedral, with hemispherical distal side and convex proximal one. Equatorial diameter 42.4–48.1 μm, polar axis 35.7–40.6 μm. Distal and proximal sides are separated by an equatorial flange, which protrudes on 4.3–4.8 μm all around the spore. Tubercles of different size form the interrupt “laesura lips” situated on both sides of laesura arms. Proximal side of spore with three stright ridges 3.1–4.5 μm width arranged parallel to spore margins and formed triangle in outline. Fused tubercles on distal side form sinuous folds with a few small areolae. Spores of Onychium ipii in compare with spores of O. moupinense Ching (Figure 3, D–F; Tables 1–2) are larger; their equatorial flange is more prominent; laesura arms are narrower; “laesura lips” are interrupted; stright ridges on the proximal side of spores Onychium ipii are broader, than the same in O. -
Are There Too Many Fern Genera? Eric Schuettpelz,1 Germinal Rouhan,2 Kathleen M
TAXON 67 (3) • June 2018: 473–480 Schuettpelz & al. • Fern genera POINT OF VIEW Are there too many fern genera? Eric Schuettpelz,1 Germinal Rouhan,2 Kathleen M. Pryer,3 Carl J. Rothfels,4 Jefferson Prado,5 Michael A. Sundue,6 Michael D. Windham,3 Robbin C. Moran7 & Alan R. Smith8 1 Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012, U.S.A. 2 Muséum national d’Histoire naturelle, Institut Systématique Evolution Biodiversité (ISYEB), CNRS, Sorbonne Université, EPHE, Herbier national, 57 rue Cuvier, CP39, 75005 Paris, France 3 Department of Biology, Duke University, Durham, North Carolina 27708, U.S.A. 4 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720-2465, U.S.A. 5 Herbário SP, Instituto de Botânica, São Paulo, SP, CP 68041, 04045-972, Brazil 6 The Pringle Herbarium, Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, U.S.A. 7 The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458-5126, U.S.A. 8 University Herbarium, University of California, Berkeley, California 94720-2465, U.S.A. Author for correspondence: Eric Schuettpelz, [email protected] DOI https://doi.org/10.12705/673.1 A global consortium of nearly 100 systematists recently the PPG I (2016) classification (e.g., those for Alsophila R.Br. published a community-derived classification for extant pteri- and Ptisana Murdock), most (1240) were driven by the broad dophytes (PPG I, 2016). This work, synthesizing morphological generic concepts favored by Christenhusz & Chase (2014) and and molecular data, recognized 18 lycophyte and 319 fern gen- Christenhusz & al. -
Spore Morphology of Pteridaceae in Iran
Australian Journal of Basic and Applied Sciences, 5(10): 1154-1156, 2011 ISSN 1991-8178 Spore morphology of Pteridaceae in Iran 1Fahimeh Salimpour, 2Mona Nazi, 3Ali Mazooji 1-2Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran. 3Department of Biology, Roodehen Branch, Islamic Azad University, Roodehen, Iran. Abstract: The spore of nine species of five genus in Pteridaceae family were examined under SEM. The spores are trilete,triangular to circular shapes.Depending on the species ,the main different ornamentations were baculate, Gemmate, regulate, wizened or triradiate. Based on these results, the identification key of nine species is presented. The spore characteristies presented here maybe useful for systematic purpose. Key words: Cheilanthoid ferns, sculpture, spore, Iran. INTRODUCTION Pteridaceae, comprises over 50 genera and more than 6000 species, accounting for roughly 10% of extant Leptosporangiate fern diversity (Smith et al., 2006: Schuettpetlz et al., 2006). Clearly monophyletic in earlier phylogenetic analyses (Gastony and Johnson, 2007: Schenider et al., 2004).This family is characterized by sporangia born along veins or in marginal coenosori,often protected by reflexed segment margins.Historically,many Taxa were segregated and variously recognized as tribes, subfamilies or even as distinct families (Copeland, 1947: Pichi sermolli, 1977). Smith et al., (2006). divided this family into two families ,the Pteridaceae and Vittariaceae, with the Pteridaceae subsequently segregated into six sub families (Adiantoideae,Pteridoideae,Ceratopteridoideae,Cheilantioideae,Platyzomatoideae and Taenitidoideael).On the other hand, there is much disagreement on the taxonomy and generic delimitation of Cheilanthoid ferns. Nayar (1970). placed some of the Gymnogrammeoid ferns in the Pteridaceae, some in Adiantaceae and rest to the Cheilanthaceae.Pichi sermoli (1977). -
Cryptogrammoideae
Cryptogrammoideae Cryptogrammoideae is one of the five subfamilies of the family Pteridaceae of ferns. The subfamily contains three genera and about 23 species. The following diagram shows a likely phylogenic relationship between the three Cryptogrammoideae genera and the other Pteridaceae subfamilies. Although the subfamily Cryptogrammoideae is similar to the family Cryptogrammaceae proposed by Pichi Sermolli in 1963, that group contained the morphologically similar genus Onychium (now in the subfamily Pteridoideae) CRYPTOGRAMMOIDEAE GENERA. A.V. Vaganov. Altai State University, South-Siberian Botanical Garden; Lenina Prospekt, 61, Barnaul, 656049, Russia. E-mail: [email protected]. Using the method of scanning electronic microscopy (SEM), a comparative study of twelve representatives of subfamily. Cryptogrammoideae. Material and methods. Spores for the study were selected from herbarium materials stored in the herbarium of the V.L. Komarov. Cryptogrammoideae is one of the five subfamilies of the Pteridaceae family of ferns. The subfamily contains three genera and about 23 species. The following diagram shows a likely phylogenic relationship between the three Cryptogrammoideae genera and the other Pteridaceae subfamilies. Although the Cryptogrammoideae subfamily is similar to the family Cryptogrammaceae proposed by Pichi Sermolli in 1963, that group contained the morphologically similar genus Onychium (now in the Pteridoideae subfamily) Cryptogramma is a genus of ferns known commonly as rockbrakes or parsley ferns. They are one of the three genera in the Cryptogrammoideae subfamily of the Pteridaceae. Cryptogramma ferns can be found in temperate regions on several continents worldwide. These ferns have two kinds of leaves which often look so different that at first glance they appear to belong to different plants. -
Exploring the Physiology and Evolution of Hornworts
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2019 Exploring the Physiology and Evolution of Hornworts Tanner A. Robison Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Robison, Tanner A., "Exploring the Physiology and Evolution of Hornworts" (2019). All Graduate Theses and Dissertations. 7668. https://digitalcommons.usu.edu/etd/7668 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EXPLORING THE PHYSIOLOGY AND EVOLUTION OF HORNWORTS by Tanner A. Robison A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: ______________________ ____________________ Paul Wolf, Ph.D. Keith Mott, Ph.D. MaJor Professor Committee Member ______________________ ____________________ Bruce Bugbee, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii ABSTRACT Exploring the Evolution and Physiology of Hornworts by Tanner Robison, Master of Science Utah State University, 2019 Major Professor: Dr. Paul G. Wolf Department: Biology To improve the ease, accuracy, and speed of organellar genome annotation for hornworts and ferns, we developed a bioinformatic tool which takes into account the process of RNA editing when examining annotations. This software works by checking the coding sequences of annotated genes for internal stop codons and for overlooked start codons which might be the result of RNA editing. -
A Classification for Extant Ferns
55 (3) • August 2006: 705–731 Smith & al. • Fern classification TAXONOMY A classification for extant ferns Alan R. Smith1, Kathleen M. Pryer2, Eric Schuettpelz2, Petra Korall2,3, Harald Schneider4 & Paul G. Wolf5 1 University Herbarium, 1001 Valley Life Sciences Building #2465, University of California, Berkeley, California 94720-2465, U.S.A. [email protected] (author for correspondence). 2 Department of Biology, Duke University, Durham, North Carolina 27708-0338, U.S.A. 3 Department of Phanerogamic Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stock- holm, Sweden. 4 Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung Systematische Botanik, Georg-August- Universität, Untere Karspüle 2, 37073 Göttingen, Germany. 5 Department of Biology, Utah State University, Logan, Utah 84322-5305, U.S.A. We present a revised classification for extant ferns, with emphasis on ordinal and familial ranks, and a synop- sis of included genera. Our classification reflects recently published phylogenetic hypotheses based on both morphological and molecular data. Within our new classification, we recognize four monophyletic classes, 11 monophyletic orders, and 37 families, 32 of which are strongly supported as monophyletic. One new family, Cibotiaceae Korall, is described. The phylogenetic affinities of a few genera in the order Polypodiales are unclear and their familial placements are therefore tentative. Alphabetical lists of accepted genera (including common synonyms), families, orders, and taxa of higher rank are provided. KEYWORDS: classification, Cibotiaceae, ferns, monilophytes, monophyletic. INTRODUCTION Euphyllophytes Recent phylogenetic studies have revealed a basal dichotomy within vascular plants, separating the lyco- Lycophytes Spermatophytes Monilophytes phytes (less than 1% of extant vascular plants) from the euphyllophytes (Fig. -
Under the Supervision of Dr.K. SURESH., M.Sc., M.Phil., Ph.D
A STUDY ON PTERIDOPHYTE FLORA OF ADUKKAM HILLS OF SOUTHERN WESTERN GHATS WITH SPECIAL REFERENCE TO CYTOLOGICAL AND ETHNOMEDICINAL ASPECTS The Thesis submitted to the Madurai Kamaraj University for the Partial fulfillment of the Degree of the Doctor of Philosophy in BOTANY By P.POUNRAJ (Reg. No. F9405) Under the Supervision of Dr.K. SURESH., M.Sc., M.Phil., Ph.D., MADURAI KAMARAJ UNIVERSITY (University with Potential for Excellence) MADURAI-625 021, INDIA NOVEMBER 2019 Name of the Canditate: P.Pounraj A STUDY ON PTERIDOPHYTE FLORA OF ADUKKAM HILLS OF SOUTHERN WESTERN GHATS WITH SPECIAL REFERENCE TO CYTOLOGICAL AND ETHNOMEDICINAL ASPECTS INTRODUCTION Pteridophytes (ferns and Lycophytes) are non-flowering cryptogams that reproduce by formation of spores. They are primitive vascular plants dominated the earth during carboniferous period. Although angiosperms and gymnosperms are the dominant plants of earth today, lycophytes and ferns are still an important component of the plant community in the forest ecosystem. There are numerous records of fossil lycophytes and ferns throughout the world, including India (Agrawal & Danai, 2017). Since water is essential for fertilization, they first diversified in the humid areas, especially in tropical regions and spread to the other parts of the world (Skog, 2001). During the course of evolution, a large number of species in this plant group have become extinct, but a good number of species gradually evolved into the modern Pteridophytes. The actual number of species of Pteridophytes on the earth is not known, but total explored species until the early years of this century are 13025 (Baillie et al., 2004). In India more than 1100 species of Pteridophytes were reported (Fraser-Jenkins, 2012).