Updating Taiwanese Pteridophyte Checklist: a New Phylogenetic Classification

Total Page:16

File Type:pdf, Size:1020Kb

Updating Taiwanese Pteridophyte Checklist: a New Phylogenetic Classification Taiwania 64(4): 367-395, 2019 DOI: 10.6165/tai.2019.64.367 Updating Taiwanese pteridophyte checklist: a new phylogenetic classification Taiwan Pteridophyte Group (TPG): Li-Yaung KUO1,2,#, Tian-Chuan HSU3,#, Yi-Shan CHAO4, Wei-Ting LIOU5, Ho-Ming CHANG6, Cheng-Wei CHEN3, Yao-Moan HUANG3, Fay-Wei LI7,8, Yu-Fang HUANG9, Wen SHAO10, Pi-Fong LU11, Chien-Wen CHEN3, Yi-Han CHANG3,*, Wen-Liang CHIOU3,12,* 1. Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan. 2. Bioresource Conservation Research Center, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan. 3. Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei City 10066, Taiwan. 4. Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung City 80708, Taiwan. 5. Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, No.12, Sec. 1, Qianshan Rd., Zhushan Township, Nantou County 55750, Taiwan. 6. Endemic Species Research Institute, No.1, Minsheng E. Rd., Jiji Township, Nantou County 552, Taiwan. 7. Boyce Thompson Institute, 533 Tower Rd., Ithaca, New York 14853, USA. 8. Plant Biology Section, Cornell University, 236 Tower Rd., Ithaca, New York 14850, USA. 9. Department of Biology Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung City 80424, Taiwan. 10. Shanghai Chenshan Botanical Garden, intersection of Chenta Rd. and Shetiankun Rd., Songjiang, Shanghai 201602, China. 11. Taiwan Society of Plant Systematics, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan. 12. Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation/Conservation Center, No. 31, Tongsing Rd., Gaoshu Township, Pingtung County 906, Taiwan. #The authors contributed equally. *Corresponding authors: YHC’s phone: 886-8-8861812#106; email: [email protected]; WLC’s phone: 886-2-2303-9978#2908; email: [email protected] (Manuscript received 25 December 2018; accepted 9 July 2019; online published 25 August 2019) ABSTRACT: Ferns and lycophytes of Taiwan display an extraordinarily high diversity. Despite the detailed species documentation, the pteridophyte flora of Taiwan as a whole has never been organized into a phylogenetic framework. Here we provide an updated, phylogeny-based checklist that includes a total of 824 (infra)species taxa, of which eleven are first recorded. In addition, lectotypification of Phlegmariurus salvinioides and new combinations of 25 taxa were made in this study. Our classification scheme is based on the most recent phylogenetic evidence, and for all taxon names accepted here, we provide their best corresponding names in Taiwanese Mandarin. Our appendix and the online file also supply other details, such as synonyms, for the Taiwanese pteridophytes in order to track their nomenclatural changes from the previous floristic documentations. Finally, a discussion group for our community-Taiwan Pteridophyte Group (TPG)- is established online. This platform will allow more users to follow further updates of TPG or to provide any comments on new versions of Taiwan pteridophyte checklist. KEY WORDS: Checklist, Conservation assessment, Fern, Lycophyte, PPG, Pteridophyte, Taiwan, TPG. INTRODUCTION Chao, 2019; Chen et al., 2019). Despite the detailed species documentation, the Ferns and lycophytes (= pteridophytes) of Taiwan pteridophyte flora of Taiwan as a whole has never been display an extraordinarily high diversity (Fig. 1) that, in organized into a phylogenetic framework that aims to terms of the pteridophyte species number, represents one reflect natural relationships of pteridophyte species by of the top five most speciose insular floras in the world ordering them with the generic and higher-levels. (Kreft et al., 2010). Knapp, in a recent work, “Fern and Advanced by insights from molecular phylogenetics, Fern Allies of Taiwan” (Knapp, 2011, 2013, Knapp and systems for pteridophyte classification have evolved Hsu, 2017) summarizes a total of 801 species and lower rapidly during the past decades, and experienced drastic taxa (including unidentified taxa), representing a near changes at different taxonomic levels (Smith et al., 2006; 20%-increase in the taxon number that had been Christenhusz et al., 2011; Rothfels et al., 2012; PPG I, officially documented in “Flora of Taiwan” (DeVol, 2016). Pteridophyte Phylogenetic Group I (PPG I, 2016), 1975, 1979; Huang, 1994, 2003; a total of 597 taxa) and for example, classifies genera and families differently “Manual of Taiwan Vascular Plants” (Kuo, 1997; Yang from the system of Kramer and Green (1990), which had and Liu, 2002; a total of 677 taxa). 824 (infra)species for been widely accepted before the era of molecular Taiwanese pteridophytes are recognized in the updated phylogenetics, and was commonly adopted in many checklist here. However, this figure is very likely an previous floristic works, such as “Manual of Taiwan underestimation, and newly recorded species are Vascular Plants, vol. 1” (Kuo, 1997). For the Taiwanese continuously being reported (e.g., Chang et al., 2019; pteridophyte flora, some systems established earlier have 367 Taiwania Vol. 64, No. 4 Fig. 1. Endemic diversity of Taiwanese pteridophytes (selected representatives). A. Isoëtes taiwanensis DeVol var. taiwanensis. B. Hymenophyllum devolii M.J.Lai. C. Lepisorus monilisorus (Hayata) Tagawa. D. Oreogrammitis taiwanensis (Parris & Ralf Knapp) T.C.Hsu. E. Pyrrosia polydactylos (Hance) Ching. F. Woodsia okamotoi Tagawa. G. Adiantum taiwanianum Tagawa. H. Angiopteris somae (Hayata) Makino & Nemoto. I. Diplazium chioui T.C.Hsu. [Photo credit by Yao-Moan Huang (A), Pi-Fong Lu (B– H), and Tian-Chuan Hsu (I)] 368 Dec 2019 TPG : New Pteridophyte checklist of Taiwan been applied, such as Engler’s system (Diels, 1899/1900) et al., 2018; Wei et al., 2018; also see Schuettpelz et al., in DeVol (1975) and Huang (1994), Copeland’s system 2018). To address such issues, when a generic treatment (Copeland, 1947) in Shieh (1972–1978), the system of different from PPG I was proposed by a TPG member, Tryon and Tryon (1982) in Kuo (1985), and Ching’s all members voted in order to find a majority consensus. system (Ching, 1978a,b; Wu and Ching, 1991) in Lu and All scientific names of ferns and lycophytes that Yang (2005). Although these classifications perform were ever cited in any effective publications as occurring well in characterizing pteridophyte genera and families in Taiwan, either indigenous or naturalized, are dealt morphologically, they fail to represent natural with in this paper. The names were first categorized into relationships informed by modern molecular either accepted or nonaccepted ones. To prepare the phylogenetics (Smith et al., 2006; Liu, 2016; PPG I, accepted name checklist, we reviewed the legitimate 2016). names and selected the best representing one for every To organize Taiwanese pteridophytes in a (infra)species taxon. For each accepted (infra)species phylogenetic context, here we provide a classification taxon/name here, its basionym, type information, scheme that is based on the most updated phylogenetic corresponding names in the four previous works (i.e., evidence, and for all taxon with accepted names here, we Huang, 1994; Yang and Liu, 2002; Wu et al., 2013; provide their best corresponding names in Taiwanese Knapp, 2014), and an appropriate Taiwanese Mandarin Mandarin. Our appendix and online file also supply name are given (the first three of these provided only in other details for the Taiwanese pteridophytes in order to the online file and appendix). The nonaccepted names track their names used in the previous floristic works. are categorized as: (i) homotypic (i.e., nomenclatural) Particularly, the online file provides the synonyms that synonyms of accepted taxa; (ii) heterotypic (i.e., will help researchers worldwide to better recognize the taxonomical) synonyms of accepted taxa; (iii) excluded Taiwanese pteridophytes taxonomically. Finally, a names, those recorded in Taiwan exclusively by discussion group (Google discussion group: traceable misidentifications; (iv) doubtfully recorded https://groups.google.com/forum/#!forum/taiwan- names, those without sufficient data to either affirm or pteridophyte-group) is established online for our reject its occurrence in Taiwan; and (v) undetermined community. This public platform will allow more users names, those taxonomic units that were neither validly to follow our further updates or to provide any comments published nor attributed to valid names. Whenever on this new Taiwan pteridophyte checklist. referable [for (i) and (ii)] or traceable [for (iii) and (v)], the corresponding accepted names for each nonaccepted METHODS name is also given. Extensive field and herbaria surveys are also We established a research community - Taiwan conducted to clarify whether additional taxa occur in Pteridophyte Group (TPG) - to prepare an updated Taiwan. Among the unrecorded taxa, a taxon checklist of Taiwanese pteridophytes. Species lists of presumably not introduced due to human activity would different taxonomic groups were first generated by be recognized as an indigenous taxon and added into the different community members. These species lists were accepted name checklist; otherwise it would be regarded prepared by reviewing the name records in four as an adventive taxon. An adventive taxon would be nd reference works - “Flora of Taiwan, 2 edition, vol. 1” further recognized as a naturalized
Recommended publications
  • A Revision of the Fern Genus Oleandra (Oleandraceae) in Asia 1 Doi: 10.3897/Phytokeys.11.2955 Monograph Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal PhytoKeys 11: 1–37 (2012)A revision of the fern genus Oleandra (Oleandraceae) in Asia 1 doi: 10.3897/phytokeys.11.2955 MONOGRAPH www.phytokeys.com Launched to accelerate biodiversity research A revision of the fern genus Oleandra (Oleandraceae) in Asia Peter H. Hovenkamp1, Boon-Chuan Ho2 1 Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands 2 Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms- Universität Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany Corresponding author: Peter H. Hovenkamp ([email protected]) Academic editor: T. Ranker | Received 16 February 2011 | Accepted 29 March 2012 | Published 6 April 2012 Citation: Hovenkamp PH, Ho B-C (2012) A revision of the fern genus Oleandra (Oleandraceae) in Asia. PhytoKeys 11: 1–37. doi: 10.3897/phytokeys.11.2955 Abstract The Asiatic species of Oleandra (Oleandraceae) are revised. We reduce a large number of species to O. neriiformis and O. sibbaldii, we provide a revised circumscription of O. cumingii and O. undulata and we establish the identity of O. vulpina. In total, we recognize 9 species, with full synonymy, descriptions and distribution maps. A list of identifications is appended. Keywords Oleandra, systematics Introduction Virtually all authors who have dealt with the genus Oleandra Cav. have commented on its distinctness or naturalness. The shrubby growth form, particularly distinct in O. neriiformis Cav., prompted Cavanilles (1799; 1802) not only to derive the genus name, but also the species name from Nerium oleander L. (Apocynaceae). From this it should be clear that he saw the aerial stems of Oleandra neriiformis, of which the forms with distinctly whorled fronds are indeed strongly reminiscent of branches of Nerium olean- der.
    [Show full text]
  • A Taxonomic Revision of Hymenophyllaceae
    BLUMEA 51: 221–280 Published on 27 July 2006 http://dx.doi.org/10.3767/000651906X622210 A TAXONOMIC REVISION OF HYMENOPHYLLACEAE ATSUSHI EBIHARA1, 2, JEAN-YVES DUBUISSON3, KUNIO IWATSUKI4, SABINE HENNEQUIN3 & MOTOMI ITO1 SUMMARY A new classification of Hymenophyllaceae, consisting of nine genera (Hymenophyllum, Didymoglos- sum, Crepidomanes, Polyphlebium, Vandenboschia, Abrodictyum, Trichomanes, Cephalomanes and Callistopteris) is proposed. Every genus, subgenus and section chiefly corresponds to the mono- phyletic group elucidated in molecular phylogenetic analyses based on chloroplast sequences. Brief descriptions and keys to the higher taxa are given, and their representative members are enumerated, including some new combinations. Key words: filmy ferns, Hymenophyllaceae, Hymenophyllum, Trichomanes. INTRODUCTION The Hymenophyllaceae, or ‘filmy ferns’, is the largest basal family of leptosporangiate ferns and comprises around 600 species (Iwatsuki, 1990). Members are easily distin- guished by their usually single-cell-thick laminae, and the monophyly of the family has not been questioned. The intrafamilial classification of the family, on the other hand, is highly controversial – several fundamentally different classifications are used by indi- vidual researchers and/or areas. Traditionally, only two genera – Hymenophyllum with bivalved involucres and Trichomanes with tubular involucres – have been recognized in this family. This scheme was expanded by Morton (1968) who hierarchically placed many subgenera, sections and subsections under
    [Show full text]
  • Diversity of Pteridophytes in Western Ghats
    Plant Archives Volume 21, No 1, 2021 pp. 1115-1129 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal home page: www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148 DIVERSITY OF PTERIDOPHYTES IN WESTERN GHATS- A REVIEW Athira Krishnan1 and Rekha K.2* 1Department of Botany, Sree Narayana College, Nattika, Thrissur, Kerala, India-680566 2Department of Botany, St. Mary’s College,Thrissur, Kerala, India- 680020. *E-mail: [email protected] (Date of Receiving-28-11-2020 ; Date of Acceptance-19-02-2021) Pteridophytes are vascular cryptogams that dominated the earth 250 million years ago. Currently, there are 13,600 species of pteridophytes around the world, and is the second most dominant plant group. In India, there are 1200 pteridophyte species with 70 families and 192 genera. The pteridophyte hotspots in India are the Himalayas, Western Ghats, Eastern Ghats, Central India, and Andaman and the Nicobar Islands. The Western Ghats occupies only 6% of the Indian landmass and still holds a pteridophyte diversity of 383 species. Fern and fern allies are highly sensitive to changes in their natural habitat, thus habitat ABSTRACT destruction, anthropogenic influences, climate change, etc., are causing a fast decline in their population. Epiphytic species are easily destroyed due to the felling of trees and because of this at present 41- 43% of epiphytic pteridophytes in India are reported to be threatened. It necessitates the frequent analysis of the pteridophyte flora of a region to ensure the existence of its species diversity. The potential of in-vitro and ex-situ conservation techniques can be explored for the conservation of threatened pteridophyte species.
    [Show full text]
  • The Fern Genus Arachniodes (Dryopteridaceae): a New Record for the Flora of Vietnam
    VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 4 (2020) 77-81 Original Article The Fern Genus Arachniodes (Dryopteridaceae): A New Record for the Flora of Vietnam Vu Phuong Linh1, Nguyen Trung Thanh1,, Doan Hoang Son2, Lu Thi Ngan3 1VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam 2Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. 3Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam Received 02 August 2020 Revised 22 November 2020; Accepted 29 November 2020 Abstract: This paper presents a new record of the fern genus Arachniodes Blume from Vietnam, Arachniodes simplicior. The paper provides a detailed description of the new species based on the traditional morphological method, of which micro morphological characters of spores were firstly described based on the specimens collected from Quang Binh (Minh Hoa district), Vietnam. In addition, type materials of A. simplicior were analyzed and a specimen from MAK (MAK012702) was designated as a lectotype. Keywords: Arachniodes simplicior, Dryopteridaceae, new record, flora of Vietnam. 1. Introduction online) [3] listed 67 accepted species and 14 hybrids while the most recently study by Lu et The genus Arachniodes Blume al. in 2018 showed that the genus contains about (Dryopteridaceae) is one of the most confusing 83 species worldwide [4]. China is considered as and controversial fern genera in terms of one of the most diversity centers of Arachniodes circumscription, nomenclature, and taxonomy. It with 40 species are recorded [5]. In Vietnam, the is a pantropical genus commonly distributed in number species of the genus has more than subtropical and tropical forest regions of the double since Pham and Phan studied of two world, mainly (abundant) in China and southern decades ago [7,8].
    [Show full text]
  • Pdf/A (670.91
    Phytotaxa 164 (1): 001–016 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.1.1 On the monophyly of subfamily Tectarioideae (Polypodiaceae) and the phylogenetic placement of some associated fern genera FA-GUO WANG1, SAM BARRATT2, WILFREDO FALCÓN3, MICHAEL F. FAY4, SAMULI LEHTONEN5, HANNA TUOMISTO5, FU-WU XING1 & MAARTEN J. M. CHRISTENHUSZ4 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. E-mail: [email protected] 2School of Biological and Biomedical Science, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom. 3Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8075 Zurich, Switzerland. 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 4DS, United Kingdom. E-mail: [email protected] (author for correspondence) 5Department of Biology, University of Turku, FI-20014 Turku, Finland. Abstract The fern genus Tectaria has generally been placed in the family Tectariaceae or in subfamily Tectarioideae (placed in Dennstaedtiaceae, Dryopteridaceae or Polypodiaceae), both of which have been variously circumscribed in the past. Here we study for the first time the phylogenetic relationships of the associated genera Hypoderris (endemic to the Caribbean), Cionidium (endemic to New Caledonia) and Pseudotectaria (endemic to Madagascar and Comoros) using DNA sequence data. Based on a broad sampling of 72 species of eupolypods I (= Polypodiaceae sensu lato) and three plastid DNA regions (atpA, rbcL and the trnL-F intergenic spacer) we were able to place the three previously unsampled genera.
    [Show full text]
  • Assessment of Diversity of Pteridophytes Along Some Hill Roads in a Biodiversity Hot Spot Region of India – a Case Study of Mizoram
    ISSN: 2350-0328 International Journal of AdvancedResearch in Science, Engineering and Technology Vol. 5, Issue 9 , September 2018 Assessment of Diversity of Pteridophytes along Some Hill Roads in a Biodiversity Hot Spot Region of India – A Case Study of Mizoram Samar. Kr.Banerjee,MousumiBanerjee , Anjani.Kr. Srivastava Department of Botany, Ranchi University, Ranchi and Principal Consultant (Environment) STUP India1 Department of Botany,Faculty of Post Graduate Studies, Scottish Church College, Kolkata 2 Department of Botany, Ranchi University, Ranchi 3 ABSTRACT: Mizoram state of India isone of the biodiversity hotspots of the world, the Eastern Himalayan biodiversity hotspot of South Asia. Panoramic view of its roadside flora reveals that it is replete with rich diversity of Pteridophytes.This is due to unique location of Mizoram, its topography with hills and valleys, and also its geology which provide immense ranges of microclimatic conditions which facilitates its growth. These pteridophytes are one of the source of carbon sink along the road. Some work related to pteridophytes have been reported by some researchers in some protected areas like sanctuaries and some forests in Mizoram. Till date no work has been reported on the diversity, ecology and IUCN red list status of pteridophytes growing along the Hill Roads in Mizoram. The paper enlists he current diversity, habitat and ecology of such pteridophytes. Effort has been made to ascertain their status in the IUCN red list and in Catalogue of Life (COL).The study is likely to help in further capacity augmentation/widening of these roads without harming the current diversity of the pteridophytes growing there .The study also provides a protocol to be followedfor monitoring and management of biodiversity along other roads of this hotspot.
    [Show full text]
  • Pteridophyte Fungal Associations: Current Knowledge and Future Perspectives
    This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109975/ Version: Accepted Version Article: Pressel, S, Bidartondo, MI, Field, KJ orcid.org/0000-0002-5196-2360 et al. (2 more authors) (2016) Pteridophyte fungal associations: Current knowledge and future perspectives. Journal of Systematics and Evolution, 54 (6). pp. 666-678. ISSN 1674-4918 https://doi.org/10.1111/jse.12227 © 2016 Institute of Botany, Chinese Academy of Sciences. This is the peer reviewed version of the following article: Pressel, S., Bidartondo, M. I., Field, K. J., Rimington, W. R. and Duckett, J. G. (2016), Pteridophyte fungal associations: Current knowledge and future perspectives. Jnl of Sytematics Evolution, 54: 666–678., which has been published in final form at https://doi.org/10.1111/jse.12227. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.
    [Show full text]
  • Polypodiaceae (PDF)
    This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Zhang, X. C., S. G. Lu, Y. X. Lin, X. P. Qi, S. Moore, F. W. Xing, F. G. Wang, P. H. Hovenkamp, M. G. Gilbert, H. P. Nooteboom, B. S. Parris, C. Haufler, M. Kato & A. R. Smith. 2013. Polypodiaceae. Pp. 758–850 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. POLYPODIACEAE 水龙骨科 shui long gu ke Zhang Xianchun (张宪春)1, Lu Shugang (陆树刚)2, Lin Youxing (林尤兴)3, Qi Xinping (齐新萍)4, Shannjye Moore (牟善杰)5, Xing Fuwu (邢福武)6, Wang Faguo (王发国)6; Peter H. Hovenkamp7, Michael G. Gilbert8, Hans P. Nooteboom7, Barbara S. Parris9, Christopher Haufler10, Masahiro Kato11, Alan R. Smith12 Plants mostly epiphytic and epilithic, a few terrestrial. Rhizomes shortly to long creeping, dictyostelic, bearing scales. Fronds monomorphic or dimorphic, mostly simple to pinnatifid or 1-pinnate (uncommonly more divided); stipes cleanly abscising near their bases or not (most grammitids), leaving short phyllopodia; veins often anastomosing or reticulate, sometimes with included veinlets, or veins free (most grammitids); indument various, of scales, hairs, or glands. Sori abaxial (rarely marginal), orbicular to oblong or elliptic, occasionally elongate, or sporangia acrostichoid, sometimes deeply embedded, sori exindusiate, sometimes covered by cadu- cous scales (soral paraphyses) when young; sporangia with 1–3-rowed, usually long stalks, frequently with paraphyses on sporangia or on receptacle; spores hyaline to yellowish, reniform, and monolete (non-grammitids), or greenish and globose-tetrahedral, trilete (most grammitids); perine various, usually thin, not strongly winged or cristate.
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • Trichomanes Elongatum
    Trichomanes elongatum COMMON NAME Bristle fern SYNONYMS Selenodesmium elongatum (A.Cunn.) Copel., Abrodictyum elongatum (A.Cunn.) Ebihara et K.Iwats. FAMILY Hymenophyllaceae AUTHORITY Trichomanes elongatum A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON No Long Bay, Coromandel. Photographer: John ENDEMIC GENUS Smith-Dodsworth No ENDEMIC FAMILY No STRUCTURAL CLASS Ferns NVS CODE TRIELO CURRENT CONSERVATION STATUS Long Bay, Coromandel. Photographer: John 2012 | Not Threatened Smith-Dodsworth PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Endemic. New Zealand: North, South and Chatham Islands. Scarce on the Chatham Islands where it is only known from Rekohu (Chatham Islands) HABITAT Coastal to montane in closed and open forest and gumland scrub. Usually on semi-shaded mossy clay banks, in overhangs on rock, soil, clay or along stream side banks. Often in rather dry or seasonally dry, semi-shaded sites. This species appears to resent poorly drained habitats. FEATURES Terrestrial tufted fern. Rhizomes short, stout, erect, bearing numerous dark brown hairs. Fronds submembranous, ± cartilaginous, dark olive-green, adaxially glossy, surfaces often covered in epiphyllous liverworts and mosses. Stipes 50-200 mm long. Rachises winged only near apices. Laminae 60-150 × deltoid, 3-pinnate. Primary and secondary pinnae overlapping, stalked; ultimate segments broad, deeply toothed, the veins forking several times in each. Sori sessile, borne in notches of lamina segments, several on each primary pinnae. Indusia tubular, mouth slightly flared, receptacle exserted. SIMILAR TAXA Easily recognised by the erect rhizome, deltoid, dark olive-green fronds (which often support epiphyllous bryophytes), and by the conspicuous tubular indusia bearing brown hair-like, bristly well exserted receptacles.
    [Show full text]
  • Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
    diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’.
    [Show full text]
  • DR VINEET KUMAR RAWAT Scientist-D & HOO BOTANICAL
    DR VINEET KUMAR RAWAT Scientist-D & HOO BOTANICAL SURVEY OF INDIA, APRC, ITANAGAR Joined as JRF in 16TH May 2001 and SRF in 2003 at BSI, CRC, ALLAHABAD in AICOPTAX –PTERIDOPHYTES Pteridophytes of Mehao Wild Life Sanctuary, Lower Dibang Valley, Arunachal Pradesh FOR THE DEGREE OF DOCTOR OF PHILOSOPHY VINEET KUMAR RAWAT. [AICOPTAX-PTERIDOPHYTES, Funded By MoEF & CC] Supervisor Co-Supervisor Dr. T. R. Sahu Dr. R. D. Dixit DR H. S. GAUR UNIVERSITY, SAGAR, MP……………………………………………………BSI, CRC, ALLAHABAD (JRF and SRF): Taxonomic Study of Pteridophytes in MWLS, Arunachal Pradesh Joined as JRF in 16TH May 2001, at BSI, CRC, ALLAHABAD Progress of work done during the Research from April 2001 to January 2007 Number of Tours 5 Field no. collected/identified species More than 1000/207 Descriptions prepared with illustrations All 207 species New Record from State/India 16/2 Papers published during Phd work 22 New species/ Rediscovered taxa after 50 years 2/4 Herbarium Consultation tour 04 RET taxa/medicinal importance 17/21 Other than PhD work • Joined Environment Planning and Coordination organisation, Bhopal (EPCO) in October 2007 with Dr R. P. Singh. • Project-Taxonomical Study in Pachmarhi and Achanakmar Amarkantak Biosphere Reserve. • Received MAB UNESCO committee status for WORLD HERITAGE SITE. • Documented 86 fern species from this area. • Participated in Socio-Economical activities. Received DST Young Scientist (w.e.f. November 2009-October 2010) • Worked in NBRI, lucknow with Dr P. B. Khare ,Pteridology Lab) • Project: Studies on the species richness of Pteridophytic Diversity of Itanagar Wild-Life Sanctuary. • Documented 127 ferns and allied species with some interesting findings.
    [Show full text]