Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit SECTION 02 22 30 DEMOLITION for REMODELING

Total Page:16

File Type:pdf, Size:1020Kb

Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit SECTION 02 22 30 DEMOLITION for REMODELING Alpena Community College Center for Health Sciences- Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit SECTION 02 22 30 DEMOLITION FOR REMODELING PART 1 GENERAL 1.1 SECTION INCLUDES A. Removal of designated building equipment and fixtures. B. Removal of designated construction. C. Disposal of materials. D. Identification of utilities. E. Refer to items schedule at end of section. 1.2 RELATED SECTIONS A. Summary: Work sequence and continued occupancy of the building. B. Execution Requirements: RE-installation of removed components. C. Division 1 - Close-Out Submittals: Project record documents. 1.3 SUBMITTALS A. See Section - Administrative Requirements for submittal procedures. B. Shop Drawings: indicate demolition; location and construction of temporary facilities. C. Project Record Documents: Accurately record actual location of capped utilities. 1.4 REGULATORY REQUIREMENTS A. Conform to applicable code for demolition work, dust control, projects requiring electrical disconnection and re-connection. B. Obtain required permits from authorities. C. Do not close or obstruct egress from any building exit or site exit. D. Do not disable or disrupt building fire or life safety systems without 3 days’ prior written notice to Owner. E. Conform to applicable regulatory procedures when hazardous or contaminated materials are discovered. 1.5 SCHEDULING A. Schedule work to coincide with new construction. B. Describe demolition removal procedures and schedule. 1.6 PROJECT CONDITIONS A. Contractor is to prepare a photo journal of all existing conditions in areas requiring work, and submit copies to the architect and owner prior to work starting. B. Conduct demolition to minimize interference with adjacent ad occupied building areas. C. Cease operations immediately if structure appears to be in danger and notify Architect. Do not resume operations until directed. D. The Architect, Construction Manager, General Contractor their consultants and their agents and employees, shall not be held responsible for the discovery, or removal of any Hazardous Materials from the existing site or buildings and shall not provide any services related to the discovery or removal of any Hazardous Materials found, The owner shall be solely responsible for discovery and removal of such material(s). Demolition for Remodeling 02.22.30 - 1 of 3 Alpena Community College Center for Health Sciences- Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit PART 2 PRODUCTS Dust Control Materials Noise Control Construction Materials Barricade materials Temporary shoring Other materials required by the scope of work. PART 3 EXECUTION 3.1 PREPARATION A. Provide, erect, and maintain temporary barriers at locations indicated. B. Contractors are to provide caution at all tunnel/basement locations with equipment/weight loads and protection of tunnels, during demolition and new construction. At areas of uncovering, provide waterproofing in accordance with Division 7. C. Erect and maintain weatherproof closures for exterior openings. D. Erect and maintain temporary partitions to prevent spread of dust, odors, and noise to permit continued building occupancy. E. Project existing materials and equipment that are not to be demolished. Refer to documents. F. Prevent movement of structure; provide bracing and shoring. G. Notify affected utility companies before starting work and comply with their requirements. H. Mark location and termination of utilities. I. Coordinate mechanical, electrical and plumbing demolition with specific trades J. Provide appropriate temporary signage including signage for exit or building egress. K. Contractor is to prepare a photo journal of all existing conditions in areas requiring work, and submit copies to the architect and owner prior to work starting. L. Contractor/CM is to initiate an onsite walk through with the architect and owner to identify and mark specific areas for salvage materials, items, and equipment. These items, areas will be protected or removed and safely stored for reuse by the owner or as directed by the documents. 3.2 MAINTENANCE A. Disconnect, remove and identify designated utilities within demolition areas. B. Demolish in an orderly and careful manner. Protect existing supporting structural members. C. Remove demolished materials from site except where specifically noted otherwise. Do not burn or bury materials on site. D. Remove materials as demolition progresses. Upon completion of demolition, leave areas in clean condition. E. Remove materials to be salvaged and reused as directed by construction documents. F. Remove temporary facilities. 3.3 SCHEDULES A. CONFIRM WITH OWNER ALL ITEMS TO BE SAVED FOR RE-USE PRIOR TO DEMOLITION . See 3.1, L B. CONFIRM WITH OWNER STORAGE LOCATIONS FOR ALL ITEMS TO BE SAVED FOR RE-USE PRIOR TO DEMOLITION C. Contractor to review scope of demolition previously completed by owner. Any discrepancies with project demolition drawings to be reviewed with Owner and Architect. D. The following materials and equipment may be identified to be salvaged if approved by Demolition for Remodeling 02.22.30 - 2 of 3 Alpena Community College Center for Health Sciences- Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit Client: 1. Doors and door hardware. 2. Toilet accessories. 3. Lighting. 4. Switches and Plates. 5. Toilet fixtures. 6. Signage (interior and exterior). 7. Face Brick. 8. Infill Brick. 9. Keystone at existing building entry. 10. Stone, Marble and other stone finishes 11. Wood trim 12. Cabinets and millwork items. 13. Existing classroom equipment (projectors, screens, chalk or white boards, assorted learning aids) 14. Exterior canopies. 15. Additional items as identified by Owner. Contractor/CM is to initiate an onsite walk through with the architect and owner to identify and mark specific areas for salvage materials, items, and equipment. These items, areas will be protected or removed and safely stored for reuse by the owner or as directed by the documents. Items identified as not “salvaged” are to be disposed of in an appropriate manner by the contractor. E. Protect the following materials and equipment to remain in place: 1. All finishes at floors walls, and ceilings in areas as designated. 2. Existing construction, noted to remain. F. Salvage Existing Brick 1. Salvage as much brick as possible for re-use in existing masonry walls. Note areas identified for possible brick salvage 2. Clean mortar from salvaged brick 3. Neatly stack all salvaged brick on pallets for re-use, in a weather protected and secured area 4. Return to owner all salvaged brick that is not used. F. Salvage Existing Stone and Cast-Stone: 1. Salvage existing stone water-coursing, foundation stone, sills, and other stone components for use in repair or replacement in areas designated in the documents or as necessary by the scope of renovation and new construction. 2. Clean mortar from salvaged brick 3. Neatly stack all salvaged stone on pallets for re-use, in a weather protected and secured area 4. Return to owner all salvaged stone that is not used. END OF SECTION 02 22 30 Demolition for Remodeling 02.22.30 - 3 of 3 Alpena Community College Center for Health Sciences- Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit SECTION 024119 - SELECTIVE DEMOLITION PART 1 - GENERAL 1.1 SUMMARY A. Section Includes: 1. Demolition and removal of selected portions of building or structure. 2. Demolition and removal of selected site elements. 3. Salvage of existing items to be reused or recycled. 1.2 MATERIALS OWNERSHIP A. Unless otherwise indicated, demolition waste becomes property of Contractor. B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner. 1. Carefully salvage in a manner to prevent damage and promptly return to Owner. 1.3 PREINSTALLATION MEETINGS A. Pre-demolition Conference: Conduct conference at Project site. 1.4 INFORMATIONAL SUBMITTALS A. Engineering Survey: Submit engineering survey of condition of building. B. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for maintaining access to and egress from the facility, for environmental protection, for dust control and, for noise control. Indicate proposed locations and construction of barriers. C. Schedule of selective demolition activities with starting and ending dates for each activity. D. Pre-demolition photographs or video. E. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician. 1.5 CLOSEOUT SUBMITTALS A. Inventory of items that have been removed and salvaged. Cornerstone Architects Selective Demolition 024119 - 1 Alpena Community College Center for Health Sciences- Van Lare Hall Renovation 17.520 9/27/2019 Plan Review and Permit 1.6 QUALITY ASSURANCE A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program. B. Personal Protective Equipment (PPE) shall be provided by the Contractor to all of the Contractor's employees and subcontractors' employees working at the site. 1.7 FIELD CONDITIONS A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted. B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner
Recommended publications
  • Static and Seismic Retrofit of Masonry Arch Bridges Case Studies
    Bridge Maintenance, Safety, Management, Resilience and Sustainability – Biondini & Frangopol (Eds) © 2012 Taylor & Francis Group, London, ISBN 978-0-415-62124-3 Static and seismic retrofit of masonry arch bridges: case studies G.Tecchio, F. da Porto, P. Zampieri, C. Modena Department of Structural and Transportation Engineering, University of Padova, Italy C. Bettio S.M. Ingegneria srl, Via longhin 6, Padova, Italy ABSTRACT: Thousands of road and railway masonry arch bridges are still in operation in the Italian trans- portation network: most of them need being improved in their carrying capacity and to be upgraded to the standards of the current seismic code. In this paper three case-studies of the static and seismic retrofit of his- torical masonry arch bridges are presented, outlining some methodological approaches to the renewal inter- vention according to the different typological characteristics of the bridges and their state of maintenance. The main phases of work, combining both traditional and innovative strengthening techniques, are described. In the S.Gallo Bridge the load bearing capacity of the existing structure has been preserved and increased through a thickening of the old arch with a new layer of brick masonry and the application of CFRP laminates. Many refurbishment techniques, derived from the historical heritage restoration field, have been used for the Rio Moline Bridge, where new longitudinal internal brick spandrel walls connected to the extrados of the vaults have been built to share some of the load and enhance the seismic resistance. In the case of the Gresal Bridge the seismic vulnerability has been reduced by creating a new structural arrangement through a new rc slab anchored to the piers with vertical ties and restrained at the abutments, collaborating with the existing structure in carrying horizontal loads.
    [Show full text]
  • Mortar Mix No
    Mortar Mix No. 1102 PRODUCT DESCRIPTION when they become "thumb print" hard. This will make the mortar joint water-tight and provide a Basic use: QUIKRETE® Mortar Mix (#1102) is neat appearance. a type N masonry mortar for use in laying brick, Coverage: Refer to table 1 for approximate block or stone; and repairing of masonry walls. coverage for each bag size. Use for brick or stone fireplaces, brick walls, block walls, parge coats, tuck pointing, stucco Table 1: Mortar Mix Usage Chart and plaster. Bag Size Standard Block Standard ® 8" X 8" X 16" Brick Composition and materials: QUIKRETE (200 mm X 200 mm X 8" X 2" X 4" Mortar (Masonry) Mix consists of a uniformly 410 mm) (200 mm X 50 blended mixture of fine sand, and type N mm X 100 mm) masonry cement. 80-lb. 12 37 Packaging: Available in three sizes: 80 lbs. (36.3 kg) (36.3 kg), 60 lbs. (27.2 kg), and 40 lbs. (18.1 28 kg). 60 lbs. 9 (27.2 kg) Technical Data QUIKRETE® Mortar Mix meets and exceeds the 40 lbs. 6 19 physical property requirements of ASTM (18.1 kg) designation 387 (Standard Specifications for Packaged, Dry, Combined Materials for Mortar Tuck Pointing or Repointing and Concrete) and ASTM C 270 for Type N Mortar. Product achieves a compressive Mixing: Mix QUIKRETE Mortar Mix with just strength in excess of 750 psi (5.17 MPa) in 28 enough water to form a damp unworkable mix day. that retains its form when pressed into a ball in the hand.
    [Show full text]
  • Planters & Fountains
    NICHOLS BRO.S STONEWORKS TM Nichols Bros. Stoneworks manufactures a broad range of quality sandstone containers in both traditional and contemporary designs. We are constantly adding new sizes and styles to expand our line of planters that are equally at home in large commercial settings, municipal projects, office buildings, malls, resorts and hotels, or adding a touch of elegance to a family home. All of our sandstone planters are hand made in the Northwest, using centuries old dry casting techniques combined with modern technology and ingredients to reduce efflorescence and Planters & Fountains increase strength and durability. This allows us to offer a ten-year warranty on these products, even against freeze and thaw damage. Exquisite as they are in their style and design our planters are crafted to function beautifully as well. We cast them with drainage holes and provide instructions and spacers to allow proper drainage. A new addition to our product line is saucers, made by Nichols Bros. Stoneworks in sizes to accompany most of our planters. Because we manufacture them, we blend the material and colors to match the planter’s finish. Because we have our own mold shop we are able to customize many of our pieces, often “blocking out” a mold to shorten a planter or create an adaptation for a water feature. Many of our planters have been adapted for use as fountains, and this is easily accomplished with pre-production modifications and post production sealing and curing. All of our pieces are made of reconstituted stone and are quite heavy. We are glad to offer any advise for transportation and installation.
    [Show full text]
  • Roof Replacement and Associated Work at the Lowell High School 50 Father Morissette Blvd
    ROOF REPLACEMENT AND ASSOCIATED WORK AT THE LOWELL HIGH SCHOOL 50 FATHER MORISSETTE BLVD. LOWELL, MASSACHUSETTS August 3, 2018 Prepared For: Prepared By: City of Lowell Gale Associates, Inc. 375 Merrimack Street 15 Constitution Drive Lowell, MA 01851 Bedford, NH 03110 Gale JN 833360 ROOF REPLACEMENT AND ASSOCIATED WORK AT THE LOWELL HIGH SCHOOL 50 FATHER MORISSETTE BLVD. LOWELL, MASSACHUSETTS GALE JN 833360 TECHNICAL SPECIFICATIONS TABLE OF CONTENTS DIVISION 1 - GENERAL REQUIREMENTS DIVISION 1 Section 01 10 00 – Summary of Work Section 01 22 00 – Unit Prices Section 01 23 00 – Alternates Section 01 33 00 – Shop Drawings and Submittals Section 01 50 00 – Temporary Facilities Section 01 63 00 – Weather Protection and Materials Storage Section 01 77 00 - Project Close-Out TECHINICAL SPECIFICATIONS DIVISION 2 Section 02 41 19 – Selective Demolition DIVISION 3 Section 03 10 00 – Concrete Formwork (to be included with the Masonry Filed-Sub Bid) Section 03 45 00 – Cast Stone Replacement (to be included with the Masonry Filed-Sub Bid) Section 03 60 00 – Concrete Repairs (to be included with the Masonry Filed-Sub Bid) DIVISION 4 Section 04 00 01 – Masonry Filed Sub-Bid Requirements Section 04 50 00 – Masonry (Filed Sub-Bid Required) DIVISION 5 Section 05 40 00 – Cold Form Metal Framing Metal Roof Ladders – Section 05 51 33 DIVISION 6 Section 06 10 00 – Rough Carpentry DIVISION 7 Section 07 42 13 – Metal Wall Panels Section 07 53 00 – Elastomeric Roofing and Flashing DIVISION 8 Section 08 10 00 – Doors and Hardware Section 08 51 00 – Metal Windows Section 08 95 00 – Insulated Translucent Panel Skylight System (Alternate No.
    [Show full text]
  • Wall Tile Failure in the Physical and Recreational Training Building, HMCS Shearwater, Dartmouth, N.S
    NRC Publications Archive Archives des publications du CNRC Wall tile failure in the physical and recreational training building, HMCS Shearwater, Dartmouth, N.S. Tibbetts, D. C. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/20359026 Technical Note (National Research Council of Canada. Division of Building Research), 1962-05-01 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=030d3c84-a61e-4721-abe0-14e7dc285439 https://publications-cnrc.canada.ca/fra/voir/objet/?id=030d3c84-a61e-4721-abe0-14e7dc285439 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected].
    [Show full text]
  • DESIGN TIPS – TECHNICAL BULLETIN #52 ALLOWING for MOVEMENT of MASONRY MATERIALS [1 of 3]
    1927 CAST STONE INSTITUTE® CAS T STONE INSTITUTE ® DESIGN TIPS – TECHNICAL BULLETIN #52 ALLOWING FOR MOVEMENT OF MASONRY MATERIALS [1 of 3] Building materials may experience dimensional changes and movement due to environmental conditions, such as temperature and moisture, or movement of adjacent building elements. If this movement is restrained, cracking may result. By accounting for movement in the wall design, cracking can be controlled. Movement joints are used to control and minimize cracking. There are two types of movement joints typically used in masonry construction; control joints and expansion joints. Control joints are placed in concrete masonry walls to limit cracks due to shrinkage. Control joints are unbonded vertical separations built into a concrete masonry wall to reduce restraint and permit longitudinal movement. They are located where cracking is likely to occur due to excessive tensile stress. An expansion joint is typically used in brick masonry walls to provide means for expansion and contraction movements produced by temperature changes, loadings or other forces. Expansion joints allow for both expansion and contraction and may be vertical or horizontal. CAUSES OF MOVEMENT Temperature Changes Most building materials experience reversible movements due to temperature change. Concrete masonry movement has been shown to be linearly proportional to temperature change. The coefficient of thermal movement normally used in design is 0.0000045 in./in./°F (0.0000081 mm/mm/°C). Actual values may range from 0.0000025 to 0.0000055 in./in./°F (0.0000045 to 0.0000099 mm/mm/°C) depending mainly on the type of aggregate used in the unit according to the National Concrete Masonry Association.
    [Show full text]
  • Westtown-Thornbury Elementary School New Classroom Addition
    Westtown-Thornbury Elementary School New Classroom Addition West Chester Area School District 29 April 2021 Project Number: 2531 Specifications Volume 2 of 4 Divisions 02-14 Westtown-Thornbury Elementary School Addition For West Chester Area School District TABLE OF CONTENTS DIVISION 00 - PROCUREMENT REQUIREMENTS 00 0010 TABLE OF CONTENTS 00 1113 ADVERTISEMENT FOR BIDS 00 2113 INSTRUCTIONS TO BIDDERS 00 21BA A701-2018 INSTRUCTIONS TO BIDDERS 00 3100 AVAILABLE PROJECT INFORMATION 00 3100.1 FINAL GEOTECHNICAL REPORT 00 3100.2 STORMWATER PERC REPORT - HC 00 4100.01 BID FORM - STIPULATED SUM, GENERAL CONSTRUCTION 00 4100.02 BID FORM - STIPULATED SUM, MECHANICAL CONSTRUCTION 00 4100.03 BID FORM - STIPULATED SUM, PLUMBING CONSTRUCTION 00 4100.04 BID FORM - STIPULATED SUM, ELECTRICAL CONSTRUCTION 00 4313 BID SECURITY FORM 00 4513 BIDDER’S QUALIFICATION QUESTIONNAIRE 00 4519 NON-COLLUSIVE AFFIDAVIT 00 5200 AGREEMENT FORM 00 5200A AIA A101-2017 STANDARD FORM OF AGREEMENT BETWEEN OWNER AND CONTRACTOR 00 6113.13 PERFORMANCE BOND 00 6113.16 PAYMENT BOND 00 7200 GENERAL CONDITIONS 00 7200A AIA A201-2017 GENERAL CONDITIONS 00 7343 WAGE RATE REQUIREMENTS 00 7343.1 PREVAILING WAGE RATE FORMS 00 7343.2 PREVAILING WAGE INSTRUCTIONS 00 7343.3 PREVAILING WAGE PROJECT RATES DIVISION 01 - GENERAL REQUIREMENTS 01 1100 SUMMARY OF WORK 01 1200 MULTIPLE CONTRACT SUMMARY 01 2300 ALTERNATES 01 2600 CONTRACT MODIFICATION PROCEDURES 01 2900 PAYMENT PROCEDURES 01 3113 PROJECT COORDINATION 01 3119 PROJECT MEETINGS 01 3216 CONSTRUCTION PROGRESS SCHEDULE 01 3300 SUBMITTAL
    [Show full text]
  • MASONRY REPAIR/REPOINTING at 310B ROUTE 32 UNCASVILLE, MONTVILLE, CT
    MONTVILLE TOWN HALL 310b Route 32 Uncasville, Montville, Connecticut Specifications For MASONRY REPAIR/REPOINTING AT 310b ROUTE 32 UNCASVILLE, MONTVILLE, CT CLA Job No. 6765 February 2021 Prepared By: CLA Engineers, Inc. Consulting Engineers 317 Main Street Norwich, CT 06360 Ph: 860-886-1966 F: 860-886-9165 I. ADVERTISEMENT FOR BIDS II. INFORMATION FOR BIDDERS III. PROPOSAL FORMS 1. BID PROPOSAL 2. FORM OF BID BOND 3. NON-COLLUSION AFFIDAVIT OF PRIME BIDDER 4. STATEMENT OF BIDDER’S QUALIFICATIONS 5. PROPOSED SUBCONTRACTORS IV. AGREEMENT AND BOND FORMS 1. CONTRACT AGREEMENT 2. CERTIFICATION 3. FORM OF PERFORMANCE BOND 4. FORM OF PAYMENT BOND V. GENERAL CONDITIONS VI. SPECIAL CONDITIONS VII. TECHNICAL SPECIFICATIONS VIII. PHOTOGRAPHS Town of Montville CLA Engineers, Inc. Masonry Repair/Repointing, 310b Route 32. Civil · Structural · Survey I. ADVERTISEMENT FOR BIDS Town of Montville CLA Engineers, Inc. Masonry Repair/Repointing, 310b Route 32. Civil · Structural · Survey ADVERTISEMENT FOR BIDS TOWN OF MONTVILLE IS SOLICITING BIDS FOR MASONRY REPAIR/REPOINTING 310b ROUTE 32 UNCASVILLE, MONTVILLE, CT Sealed bids for MASONRY REPAIR/REPOINTING AT 310b ROUTE 32, UNCASVILLE, MONTVILLE, CT will be received at Montville Town Hall, 310 Norwich-New London Turnpike, Montville CT, until 10:00 am on April 6th, 2021, prevailing time, at which time they will be publicly opened and read aloud in the Town Council Chambers. The Contract generally consists of the repair and repointing of the existing exterior brickwork of Building #2 located at 310b Route 32, Uncasville, Montville, CT. The 2-story masonry building has prevalent cracking in the mortar throughout, cracks that extend through bricks, spalling of brick, and mortar loss occurring frequently.
    [Show full text]
  • Architectural Cast Stone
    Architectural Cast Stone TECHNICAL RESOURCES AT A GLANCE Specification ■ Standards ■ Technical Bulletins The purpose of this publication is to assist the architect and engineer by providing up to date information for the proper use, design and specification of Architectural Cast Stone. 1 2 █ █ MORTARS FOR CAST STONE INSTALLATION PRIMARY REFERENCE DOCUMENTS Selecting the appropriate type of mortar for setting cast stone is perhaps the most important factor in the performance of a masonry wall. The mortar must have sufficient strength, be durable, resist rain penetration ■ ASTM C1364-17 Standard Specification for Architectural Cast Stone as much as possible and yet be flexible enough to accommodate slight movement within the wall assembly. This is considered the master document for cast stone and can be purchased through the As noted in TMS 604-16, Standard Specification for Installation of Architectural Cast Stone, mortars used in the ASTM website at www.astm.org. This is the current version of the document which could be setting of cast stone should meet the requirements of ASTM C270, Type N mortars. updated by ASTM in the future. Therefore you will want to check on their website astm.org for any updated information. Included in this Bulletin is information on proper mortar mixing, wetting, head and bed joints, the proper specification of mortar/pointed joints and sealant joints, raking and pointing of joints, lug sills, selection of joint ■ TMS 404-504-604 types, and more. Architectural Cast Stone Standards developed through The Masonry Society TMS 404 Design, 504 Fabrication and 604 ► Reference Technical Bulletin #42. Installation in one standards publication.
    [Show full text]
  • Section 047200
    University of Houston Master Construction Specifications <%Insert Project Name%> SECTION 04 72 00 - CAST STONE MASONRY PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. B. The Contractor's attention is specifically directed, but not limited, to the following documents for additional requirements: 1. Uniform General Conditions for Construction Contracts, State of Texas, 20010 (UGC). 2. The University of Houston’s Supplemental General Conditions and Special Conditions for Construction. 1.2 SUMMARY A. Section Includes: 1. Cast stone trim including the following: a. Window sills. b. Lintels. c. Surrounds. d. Coping. e. Wall caps. f. Belt courses. g. Water tables. h. Quoins. i. Pilasters. j. Column covers. k. Medallions. 2. Cast stone steps. 3. Cast stone bollards. 4. Cast stone benches. 5. Cast stone curbing. B. Related Sections: 1. Section 03 45 00 "Precast Architectural Concrete." 2. Section 04 20 00 "Unit Masonry" for installing cast stone units in unit masonry. AE Project #: <%Project Number%> Cast Stone Masonry 04 72 00 - 1 Revision Date: 01/29/2018 University of Houston Master Construction Specifications <%Insert Project Name%> 1.3 ACTION SUBMITTALS A. Product Data: For each type of product indicated. 1. For cast stone units, include construction details, material descriptions, dimensions of individual components and profiles, and finishes. B. LEED Submittals (Projects authorized for LEED certification only): 1. Product Certificates for Credit MR 5: For products and materials required to comply with requirements for regional materials indicating location and distance from Project of material manufacturer and point of extraction, harvest, or recovery for each raw material.
    [Show full text]
  • Repointing Masonry Walls
    TM TECHNOLOGY BRIEF October 2002 RESOURCE INFORMATION FROM THE INTERNATIONAL MASONRY INSTITUTE Section 6.2 Repointing Masonry Walls The durability and longevity of masonry is greater than that of any other building material, as evident in the thousands of old brick buildings throughout our neighborhoods and towns. When designed and constructed properly, masonry can last hundreds of years or more. To maximize the life of a masonry building, the mortar joints will need periodic maintenance during the building’s life cycle. As with any building product continuously exposed to the elements, the joints are susceptible to weathering, acids in the rain, seismic movement, building settlement, freezing and thawing cycles, impact damage, and dirt. When visual inspection reveals that the mortar joints are cracking or otherwise deteriorated, restoration is necessary to help maintain the integrity of the wall system. Commonly known as tuckpointing, “repointing” is the preferred term used to describe the process of cutting out deteriorated mortar joints in a masonry wall and filling in those joints with fresh mortar. The goals of a repointing job should be to remove and replace mortar in a way that will main- tain the structural properties of the wall, improve the appearance of the wall, and form weathertight joints. To accomplish this, the architect should produce drawings and specifications that will clearly state the requirements for mortar removal, joint preparation, preparation of pointing mortar, and placing mortar in the joints. For best results, use only contractors employing trained, skilled tuckpointers. Determining Scope The architect should determine the scope of the work with the assistance of the tuckpointing contractor.
    [Show full text]
  • Preservation Guide for Stone Masonry and Dry-Laid Resources
    PRESERVATION GUIDE FOR STONE MASONRY AND DRY-LAID RESOURCES ABBY GLANVILLE GREG HARTELL INTERN FOR HISTORIC PRESERVATION SUMMER 2008 2 CONTENTS ACKNOWLEDGMENTS 5 INTRODUCTION 7 OVERVIEW 8 CRATER LAKE: RESOURCES AT A GLANCE 10 MAINTENANCE GUIDELINES 16 DOCUMENTATION 37 GUIDELINE SUMMARY 38 HISTORIC PHOTOGRAPHS 43 ENDNOTES 45 BIBLIOGRAPHY 46 A PHOTOGRAPHIC INVENTORY OF MASONRY AND DRY-LAID FEATURES WITH AN INTERACTIVE MAP SHOWING THE LOCA­ TIONS OF THESE FEATURES WAS DEVELOPED IN TANDEM WITH THIS MANUAL AND IS ON FILE WITH PARK HISTORIAN, STEVE MARK. 3 4 ACKNOWLEDGMENTS MY SINCERE THANKS ARE EXTENDED TO THE FRIENDS OF CRATER LAKE NATIONAL PARK FOR THEIR SUPPORT OF HISTORIC PRESERVATION THROUGH THE GREG HARTELL INTERNSHIP. THIS INTERNSHIP ALLOWS GRADUA TE STU­ DENTS FROM THE UNIVERSITY OF OREGON'S HISTORIC PRESERVATION PROGRAM TO GAIN PROFESSIONAL EX­ PERIENCE THROUGH PRESERVATION RELATED PROJECTS AT CRATER LAKE NATIONAL PARK THANK YOU ALSO TO CRATER LAKE NATIONAL PARK SU­ PERINTENDENT CRAIG ACKERMAN FORMER INTERIM SU­ PERINTENDENT STEPHANIE TOOTH MAN, AND FORMER SUPERINTENDENT CHUCK LUNDY, AS WELL AS MARSHA MCCABE, CHIEF OF INTERPRETATION AND CULTURAL RESOURCES, FOR THEIR SUPPORT OF THE GREG HARTELL INTERNSHIP FOR HISTORIC PRESERVATION; MAC BROCK BRIAN COULTER, LINDA HILLIGOSS, LESLIE JEHNINGS, CHERI KILLAM BOMHARD, DAVE RlVARD, BOB SCHAEFER, LI A VELLA, AND JERRY WATSON FOR THEIR EXPERTISE, ADVICE, AND FEEDBACK; MARY BENTEROU, FOR PREPARING DIGITAL IMAGES OF DRAW­ INGS; KINGSTON HEATH, DIRECTOR OF THE UNIVERSITY OF OREGON'S HISTORIC PRESERVATION PROGRAM, AND TARA LKENOUYE FOR THEIR ASSISTANCE IN OBTAINING THIS INTERNSHIP; AND TO MY SUPERVISORS KARL BACH- MAN, CHIEF OF MAINTENANCE, WHOSE RESOURCEFUL­ NESS AND DEDICATION TO PRESERVING CULTURAL RE­ SOURCES WITHIN THE PARK MADE THIS WONDERFUL IN­ TERNSHIP PROJECT POSSIBLE, AND STEVE MARK, CRATER LAKE NATIONAL PARK HISTORIAN, WHOSE EXPERTISE IN THE PARK'S HISTORY AND ARCHITECTURE GREATLY EN­ RICHED BOTH THE INTERNSHIP EXPERIENCE AND THE CONTENT OF THIS MANUAL.
    [Show full text]