Emerging Issues in Virus Taxonomy Marc H.V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide for Common Viral Diseases of Animals in Louisiana
Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. -
Rapid Identification of Known and New RNA Viruses from Animal Tissues
Rapid Identification of Known and New RNA Viruses from Animal Tissues Joseph G. Victoria1,2*, Amit Kapoor1,2, Kent Dupuis3, David P. Schnurr3, Eric L. Delwart1,2 1 Department of Molecular Virology, Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California, San Francisco, California, United States of America, 3 Viral and Rickettsial Disease Laboratory, Division of Communicable Disease Control, California State Department of Public Health, Richmond, California, United States of America Abstract Viral surveillance programs or diagnostic labs occasionally obtain infectious samples that fail to be typed by available cell culture, serological, or nucleic acid tests. Five such samples, originating from insect pools, skunk brain, human feces and sewer effluent, collected between 1955 and 1980, resulted in pathology when inoculated into suckling mice. In this study, sequence-independent amplification of partially purified viral nucleic acids and small scale shotgun sequencing was used on mouse brain and muscle tissues. A single viral agent was identified in each sample. For each virus, between 16% to 57% of the viral genome was acquired by sequencing only 42–108 plasmid inserts. Viruses derived from human feces or sewer effluent belonged to the Picornaviridae family and showed between 80% to 91% amino acid identities to known picornaviruses. The complete polyprotein sequence of one virus showed strong similarity to a simian picornavirus sequence in the provisional Sapelovirus genus. Insects and skunk derived viral sequences exhibited amino acid identities ranging from 25% to 98% to the segmented genomes of viruses within the Reoviridae family. Two isolates were highly divergent: one is potentially a new species within the orthoreovirus genus, and the other is a new species within the orbivirus genus. -
Orbiviruses: a North American Perspective
VECTOR-BORNE AND ZOONOTIC DISEASES Volume 15, Number 6, 2015 ORIGINAL ARTICLES ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2014.1699 Orbiviruses: A North American Perspective D. Scott McVey,1 Barbara S. Drolet,1 Mark G. Ruder,1 William C. Wilson,1 Dana Nayduch,1 Robert Pfannenstiel,1 Lee W. Cohnstaedt,1 N. James MacLachlan,2 and Cyril G. Gay3 Abstract Orbiviruses are members of the Reoviridae family and include bluetongue virus (BTV) and epizootic hem- orrhagic disease virus (EHDV). These viruses are the cause of significant regional disease outbreaks among livestock and wildlife in the United States, some of which have been characterized by significant morbidity and mortality. Competent vectors are clearly present in most regions of the globe; therefore, all segments of production livestock are at risk for serious disease outbreaks. Animals with subclinical infections also serve as reservoirs of infection and often result in significant trade restrictions. The economic and explicit impacts of BTV and EHDV infections are difficult to measure, but infections are a cause of economic loss for producers and loss of natural resources (wildlife). In response to United States Animal Health Association (USAHA) Resolution 16, the US Department of Agriculture (USDA), in collaboration with the Department of the Interior (DOI), organized a gap analysis workshop composed of international experts on Orbiviruses. The workshop participants met at the Arthropod-Borne Animal Diseases Research Unit in Manhattan, KS, May 14–16, 2013, to assess the available scientific information and status of currently available countermeasures to effectively control and mitigate the impact of an outbreak of an emerging Orbivirus with epizootic potential, with special emphasis given to BTV and EHDV. -
Peruvian Horse Sickness Virus and Yunnan Orbivirus, Isolated from Vertebrates and Mosquitoes in Peru and Australia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 394 (2009) 298–310 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia Houssam Attoui a,⁎,1, Maria Rosario Mendez-lopez b,⁎,1, Shujing Rao c,1, Ana Hurtado-Alendes b,1, Frank Lizaraso-Caparo b, Fauziah Mohd Jaafar a, Alan R. Samuel a, Mourad Belhouchet a, Lindsay I. Pritchard d, Lorna Melville e, Richard P. Weir e, Alex D. Hyatt d, Steven S. Davis e, Ross Lunt d, Charles H. Calisher f, Robert B. Tesh g, Ricardo Fujita b, Peter P.C. Mertens a a Department of Vector Borne Diseases, Institute for Animal Health, Pirbright, Woking, Surrey, GU24 0NF, UK b Research Institute and Institute of Genetics and Molecular Biology, Universidad San Martín de Porres Medical School, Lima, Perú c Clemson University, 114 Long Hall, Clemson, SC 29634-0315, USA d Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia e Northern Territory Department of Primary Industries, Fisheries and Mines, Berrimah Veterinary Laboratories, Berrimah, Northern Territory 0801, Australia f Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA g Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA article info abstract Article history: During 1997, two new viruses were isolated from outbreaks of disease that occurred in horses, donkeys, Received 11 June 2009 cattle and sheep in Peru. -
Adenovirus Infections in Humans
CHAPTER 11 Adenovirus Infections in Humans STEPHEN E. STRAUS I. INTRODUCTION Adenoviruses are ubiquitous agents that infect humans of all ages. The discovery of the first adenovirus types three decades ago paved the way for countless studies that continue to uncover additional viral strains and ever expand our comprehension of their significance to man. Whereas some human adenoviruses are being examined at the increasingly so phisticated molecular and cellular levels, the means by which they infect man, provoke illness, or are handled by the body's immune system remain very poorly understood. This chapter represents an attempt to catalogue the known human adenovirus agents, to summarize the data pertaining to their acquisition and transmission, to review the range of illness with which they are associated, and to highlight those aspects of adenovirus infection that are in need of further investigation. II. ADENOVIRUSES RECOVERED FROM HUMANS The 41 distinct adenovirus types that have been recovered from hu mans thus far are listed in Table I. Most of these agents were isolated during an extremely fruitful decade of studies that followed the initial discovery of adenoviruses. A wide range of illnesses has been associated with the better-defined, lower-numbered virus types, but the predilection STEPHEN E. STRAUS • Medical Virology Section, Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, Maryland 20205. 451 H. S. Ginsberg (ed.), The Adenoviruses © Plenum Press, New York 1984 452 STEPHEN E. STRAUS TABLE I. Adenovirus ImmunotypesQ Major Prototype associated Type strain Source Patient diagnosis diseasesb Ad71 Adenoid Hypertrophied tonsils and Respiratory adenoids 2 Ad6 Adenoid Hypertrophied tonsils and Respiratory adenoids 3 G.B. -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Supporting Information
Supporting Information Rosenberg et al. 10.1073/pnas.1307243110 SI Results and Discussion domestic ungulates (horses, cows, sheep, goats, camels, and pigs) Of the 83 arboviruses, nonhuman vertebrate hosts have been and rodents in both groups might be a consequence of spatial identified for 70 (84%); the remaining 13 are presumed to be proximity to humans. Sentinel monkeys were often used in pro- zoonoses because there is no indication they can be transmitted cedures to isolate arboviruses, which might account for their directly between humans by vectors (Table S1). Animal hosts have higher representation among arboviruses. In contrast, there are been identified for at least 57 (44%) of the 130 nonarboviruses; an few published records of bats being routinely sampled during additional 5 (8%) are presumed on epidemiological evidence to arbovirus studies, and only two arboviruses (3%) have been iso- have nonhuman reservoirs (Table S1). A number of viruses infect lated from bats. The reason a much larger number of arbovirus more than one nonhuman vertebrate host species and it is likely species (n = 16) have been isolated from birds than have that the variety of hosts is wider than has been recorded. The nonarbovirus species (n = 1) might, however, be characteristic of predominant host groups for arboviruses (n = 70) are nonhuman the pathogenicity of the togaviruses and flaviviruses, which are primates (31%), rodents (29%), ungulates (26%), and birds (23%); much more common among the arboviruses. The most prominent for the nonarboviruses (n = 57), they are rodents (30%), ungu- vectors of arboviruses were mosquitoes (67%), ticks (19%), and lates (26%), bats (23%), and primates (16%). -
Validation and Annotation of Virus Sequence Submissions to Genbank Alejandro A
Schäffer et al. BMC Bioinformatics (2020) 21:211 https://doi.org/10.1186/s12859-020-3537-3 SOFTWARE Open Access VADR: validation and annotation of virus sequence submissions to GenBank Alejandro A. Schäffer1,2, Eneida L. Hatcher2, Linda Yankie2, Lara Shonkwiler2,3,J.RodneyBrister2, Ilene Karsch-Mizrachi2 and Eric P. Nawrocki2* *Correspondence: [email protected] Abstract 2National Center for Biotechnology Background: GenBank contains over 3 million viral sequences. The National Center Information, National Library of for Biotechnology Information (NCBI) previously made available a tool for validating Medicine, National Institutes of Health, Bethesda, MD, 20894 USA and annotating influenza virus sequences that is used to check submissions to Full list of author information is GenBank. Before this project, there was no analogous tool in use for non-influenza viral available at the end of the article sequence submissions. Results: We developed a system called VADR (Viral Annotation DefineR) that validates and annotates viral sequences in GenBank submissions. The annotation system is based on the analysis of the input nucleotide sequence using models built from curated RefSeqs. Hidden Markov models are used to classify sequences by determining the RefSeq they are most similar to, and feature annotation from the RefSeq is mapped based on a nucleotide alignment of the full sequence to a covariance model. Predicted proteins encoded by the sequence are validated with nucleotide-to-protein alignments using BLAST. The system identifies 43 types of “alerts” that (unlike the previous BLAST-based system) provide deterministic and rigorous feedback to researchers who submit sequences with unexpected characteristics. VADR has been integrated into GenBank’s submission processing pipeline allowing for viral submissions passing all tests to be accepted and annotated automatically, without the need for any human (GenBank indexer) intervention. -
Bats: Important Reservoir Hosts of Emerging Viruses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Other Publications in Zoonotics and Wildlife Disease Wildlife Disease and Zoonotics 2006 Bats: Important Reservoir Hosts of Emerging Viruses Charles H. Calisher Colorado State University James E. Childs Yale University School of Medicine, [email protected] Hume E. Field Department of Primary Industries and Fisheries, Brisbane, Queensland Tony Schountz University of Northern Colorado Kathryn V. Holmes University of Colorado Health Sciences Center Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub Part of the Veterinary Infectious Diseases Commons Calisher, Charles H.; Childs, James E.; Field, Hume E.; Schountz, Tony; and Holmes, Kathryn V., "Bats: Important Reservoir Hosts of Emerging Viruses" (2006). Other Publications in Zoonotics and Wildlife Disease. 60. https://digitalcommons.unl.edu/zoonoticspub/60 This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLINICAL MICROBIOLOGY REVIEWS, July 2006, p. 531–545 Vol. 19, No. 3 0893-8512/06/$08.00ϩ0 doi:10.1128/CMR.00017-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Bats: Important Reservoir Hosts of Emerging Viruses Charles H. Calisher,1* James E. Childs,2 Hume E. Field,3 Kathryn V. Holmes,4 -
Protein Composition of the Hepatitis a Virus Quasi-Envelope
Protein composition of the hepatitis A virus quasi-envelope Kevin L. McKnighta,b,c, Ling Xiec,d, Olga González-Lópeza,b,c, Efraín E. Rivera-Serranoa,b,c, Xian Chenc,d, and Stanley M. Lemona,b,c,1 aDepartment of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292; bDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292; cLineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295; and dDepartment of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260 Edited by Mary K. Estes, Baylor College of Medicine, Houston, TX, and approved April 12, 2017 (received for review November 27, 2016) The Picornaviridae are a diverse family of RNA viruses including many within extracellular vesicles before cell lysis, often with many pathogens of medical and veterinary importance. Classically consid- capsids packaged within a single vesicle (4–6). The cellular egress ered “nonenveloped,” recent studies show that some picornaviruses, of these classically nonenveloped viruses in membrane-bound notably hepatitis A virus (HAV; genus Hepatovirus) and some mem- vesicles has blurred the distinction between enveloped and bers of the Enterovirus genus, are released from cells nonlytically in nonenveloped viruses and has important implications for path- membranous vesicles. To better understand the biogenesis of quasi- ogenesis (2). enveloped HAV (eHAV) virions, we conducted a quantitative proteo- Several lines of evidence indicate that the biogenesis of quasi- mics analysis of eHAV purified from cell-culture supernatant fluids by enveloped eHAV virions is dependent upon components of the isopycnic ultracentrifugation. -
Taxonomy and Comparative Virology of the Influenza Viruses
2 Taxonomy and Comparative Virology of the Influenza Viruses INTRODUCTION Viral taxonomy has evolved slowly (and often contentiously) from a time when viruses were identified at the whim of the investigator by place names, names of persons (investigator or patient), sigla, Greco-Latin hybrid names, host of origin, or name of associated disease. Originally studied by pathologists and physicians, viruses were first named for the diseases they caused or the lesions they induced. Yellow fever virus turned its victims yellow with jaundice, and the virus now known as poliovirus destroyed the anterior horn cells or gray (polio) matter of the spinal cord. But the close kinship of polioviruses with coxsackievirus B1, the cause of the epidemic pleurodynia, is not apparent from names derived variously from site of pathogenic lesion and place of original virus isolation (Cox sackie, New York). In practice, many of the older names of viruses remain in common use, but the importance of a formal, more regularized approach to viral classification has been increasingly recognized by students and practitioners of virology as more basic information has become available about the nature of viruses. Accordingly, the International Committee on Taxonomy of Viruses has devised a generally ac cepted system for the classification and nomenclature of viruses that serves the needs of comparative virology in formulating regular guidelines for viral nomen clature. Although this nomenclature remains highly diversified and at times in consistent, retaining many older names, it affirms "an effort ... toward a latinized nomenclature" (Matthews, 1981) and places primary emphasis on virus structure and replication in viral classification. -
Virusscope – Inside a Virus Testing Lab
VirusSCOPE – Inside a virus testing lab Viruses are too small to be seen. There are different kinds of tests to find out whether someone has a virus in their body. These tests are carried out in specialized laboratories. One kind of test uses so-called antibodies. Antibodies are tiny recognition tools, which our body uses to recognize and fight viruses. Each antibody has a different shape, which makes it recognize a certain virus. In the lab, such antibodies are used to find and distinguish viruses in patients. Now, this is your task! Can you find out, which viruses are in your patients' bodies? Here’s what you’ll learn: In the lab, people find out which virus someone has by using antibodies. The shape of these antibodies matches perfectly with one specific virus. Antibodies have several parts. Material for print-out (4 pages): - Viruses (16 purple fields) - Antibodies (4 red and 4 blue parts with QR-Codes and letters) – cut these out! - Samples from 9 patients (green flasks with QR-Codes and numbers) - Laboratory report You can play this game on your own or in pairs. If you play this game in pairs, one person can find the matching parts, while the other documents your findings in the laboratory report. Alternatively, print out the materials twice and compete against each other to diagnose all patients correctly as quickly as possible! Note: The QR-Codes are not needed in this game. If you have access to a 3D-printer you can also 3D-print the parts of this game: https://www.prusaprinters.org/prints/28554-virusscope-educational-game-about-covid-19- diagnos 1st step: Assign antibodies to viruses Each antibody consists of two pieces, a „light chain“ (red) and a „heavy chain” (red).