The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1 http://www.paper.edu.cn American Journal of Botany 92(1): 167±178. 2005. THE MOLECULAR PHYLOGENY OF ALPINIA (ZINGIBERACEAE): A COMPLEX AND POLYPHYLETIC GENUS OF GINGERS1 W. J OHN KRESS,2,3,5 AI-ZHONG LIU,2 MARK NEWMAN,4 AND QING-JUN LI3 2Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012 USA; 3Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China; and 4Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Alpinia is the largest, most widespread, and most taxonomically complex genus in the Zingiberaceae with 230 species occurring throughout tropical and subtropical Asia. Species of Alpinia often predominate in the understory of forests, while others are important ornamentals and medicinals. Investigations of the evolutionary relationships of a subset of species of Alpinia using DNA sequence- based methods speci®cally test the monophyly of the genus and the validity of the previous classi®cations. Seventy-two species of Alpinia, 27 non-Alpinia species in the subfamily Alpinioideae, eight species in the subfamily Zingiberoideae, one species in the subfamily Tamijioideae, and three species in the outgroup genus Siphonochilus (Siphonochiloideae) were sequenced for the plastid matK region and the nuclear internal transcribed spacer (ITS) loci. Parsimony analyses of both individual and combined data sets identi®ed six polyphyletic clades containing species of Alpinia distributed across the tribe Alpinieae. These results were supported by a Bayesian analysis of the combined data set. Except in a few speci®c cases, these monophyletic groupings of species do not correspond with either Schumann's (1904) or Smith's (1990) classi®cation of the genus. Here we build on previous molecular analyses of the Alpinioideae and propose the next steps necessary to recognize new generic boundaries in the Alpinieae. Key words: Alpinia; ¯existyly; gingers; ITS; matK; phylogeny; tropical; Zingiberaceae. Alpinia Roxb. is the largest and most widespread genus in & S.J. Chen and A. blepharocalyx K. Schum.) the plants form the Zingiberaceae with some 230 species occurring from Sri large stands in the understory, along forest margins, and in Lanka and the Western Ghats of India to China, Japan, all of light gaps, while other species are dominant in wetlands and southeast Asia, the Paci®c as far as Fiji, Samoa, and the Car- along water courses [e.g., A. nigra (Gaertn.) B.L. Burtt]. Al- oline Islands, and Australia as far south as northern New South though most alpinias are pollinated by large bees, some spe- Wales (Larsen et al., 1998; Smith, 1990). Most species grow cies attract birds and even bats as pollinators (Zhang et al., in low- to mid-elevation forests and form clumps with stems 2003; Kress and Specht, in press). Flexistyly, a novel ¯oral from 1±3 m high, although species east of Wallace's Line tend mechanism promoting outcrossing in which styles move up or to grow much larger. Alpinia regia R.M. Sm. of the Moluccas down depending on the timing of anther dehiscence, has been and A. boia Seem. of Fiji, for example, reach over 8 m in described in a number of species of Alpinia (Li et al., 2001, height. Some species are found in montane forests up to 2000 2002; Zhang et al., 2003). m above sea level in New Guinea and Sulawesi. However, The generic name Alpinia was ®rst used by Linnaeus for very few are tolerant of frost. The most northerly species is Alpinia racemosa, a neotropical species. Many Asiatic species Alpinia japonica (Thunb.) Miq., which survives north of To- were added to Alpinia, while later authors tended to refer kyo where the winters can be severe. Several species are im- American species to Renealmia L.f. Schumann (1904) ®nal- portant ornamentals (e.g., A. purpurata (Vieill.) K. Schum.) as ized these taxonomic concepts and subsequently Alpinia Roxb. potted plants, landscape accents, and cut ¯owers, and at least was conserved for the Asiatic species with Alpinia galanga one (A. zerumbet (Pers.) B.L. Burtt & R.M. Sm.) is naturalized (L.) Willd. as its type. in tropical regions around the world. In Asia, especially China Alpinia is the type genus of the tribe Alpinieae A. Rich. of (Wu and Larsen, 2000), alpinias are used as medicinals (e.g., the family Zingiberaceae. This tribe consists of evergreen A. of®cinarum Hance) and in cooking [A. galanga (L.) Willd.]. herbs, in which an abscission layer between the rhizome and Alpinias play an important ecological role in the understory the leafy shoots is lacking, the plane of distichy of the leaves of tropical and subtropical forests where many species are is transverse to the direction of growth of the rhizome, and quite common. In some cases (e.g., A. kwangsiensis T.L. Wu the lateral staminodes of the ¯owers are small, reduced to swellings at either side of the base of the labellum, or are 1 Manuscript received 26 March 2004; revision accepted 16 September entirely absent. Extra¯oral nectaries are absent, and the fruit 2004. The authors thank Ray Baker, Mike Bordelon, Jiang-Yun Gao, Mary Gibby, is usually spherical and indehiscent or ¯eshy (Kress et al., David Harris, Kai Larsen, Jing-Ping Liao, Ida Lopez, Achariya Rangsiruji, Chel- 2002). sea Specht, and Yong-Mei Xia, for discussion, assistance, and tissue samples Within the tribe Alpinieae, generic limits are dif®cult to dis- that made this investigation possible. This work was funded by the key project cern. While some genera may be easily recognized by their of the Ministry of Science and Technology of China (2001CCA00300), the respective morphological characters and/or geographic distri- National Natural Science Foundation of China Grants 30225007 and 30170069, the Smithsonian Scholarly Studies Program and the Biotic Surveys and Inven- bution (e.g., Aframomum, Elettaria, Hornstedtia, Burbidgea), tories Program of the National Museum of Natural History. it is hard to identify an apomorphy or universal character for 5 E-mail: [email protected]. species currently assigned to Alpinia. Virtually all species 167 转载 中国科技论文在线 http://www.paper.edu.cn 168 AMERICAN JOURNAL OF BOTANY [Vol. 92 Figs. 1±9. Representative ¯oral types of the major groups of species of Alpinia. 1. Alpinia nigra. 2. A. galanga. 3. A. conchigera. 4. A. carolinensis. 5. A. zerumbet. 6. A. guangdongensis. 7. A. calcarata. 8. A. oxyphylla. 9. A. elegans. ¯ower terminally on the leafy shoots and all are Asiatic. These in¯orescence and ¯ower characters. Much variation exists in characters distinguish Alpinia from the Afro-American Re- these features (Figs. 1±9), from species with branched in¯o- nealmia, in which most species produce in¯orescences on a rescences and long cincinni subtended by bracts in which the separate, lea¯ess shoot from the rhizome, but do not uniquely ¯owers are each subtended by bracteoles, to other species with separate it from other members of the Alpinieae. Therefore, to no bracts or bracteoles and cincinni of only a single ¯ower. In a large degree, one is forced to recognize Alpinia only by the Flora of British India, Baker (1894) considered the species eliminating other genera, i.e., it is distinguished only by the of Alpinia that occur from Sri Lanka to Singapore. His account plesiomorphic characters of the tribe. included descriptions of 17 species from a known total of 30 Several attempts have been made to divide Alpinia into at that time and divided them into two subgenera and two smaller genera by elevating some of the more coherent groups sections according to the presence of an anther crest, the pos- of species to the generic rank. Holttum (1950) applied the session of large bracteoles, and the position of the in¯ores- name Alpinia to a small group of species with funnel-shaped cence. Schumann (1904) treated Alpinia throughout its range bracteoles and allocated the remaining species to Catimbium, in his account of the Zingiberaceae for Das P¯anzenreich (Ta- Cenolophon, and Languas. Several nomenclatural problems ble 1) dividing it into ®ve subgenera and 27 sections. Eight were present in this system, but its principal failing was that of Schumann's sections have now been placed in entirely dif- it only worked for the species of Malaysia. Later authors, ferent genera, leaving Alpinia with ®ve subgenera and 19 sec- therefore, returned to the concept of Alpinia sensu Schumann tions. Characteristics of the bracts and bracteoles are the most until Smith (1990) recognized a group of 22 species in New important diagnostic features in Schumann's classi®cation. Guinea that she segregated under the generic name Pleuran- Valeton (1913) later divided section Eubractea into subsection thodium (K. Schum.) R.M. Sm. Eustales and subsection Kolowratia and added a new section Infrageneric classi®cations of Alpinia have been based on Monanthocrater to Schumann's 1904 system. He admitted that 中国科技论文在线 http://www.paper.edu.cn January 2005] KRESS ET AL.ÐPHYLOGENY OF ALPINIA 169 TABLE 1. Infrageneric classi®cation of Alpinia according to Schumann (1904). Accepted generic Corresponding clades of Subgenus Section position molecular analyses Autalpinia Pycnopyramis 5 Plagiostachys Zerumbet (IV) Leptosolenia 5 Leptosolena Eubractea (V) Hellenia 5 Alpinia Galanga (II), Zerumbet (IV), Eubractea (V) Psychanthus 5 Pleuranthodium Tribe Riedelieae Cenolophon 5 Alpinia not represented Pleuranthodium 5 Pleuranthodium Tribe Riedelieae Guillania 5 Alpinia Eubractea (V) Probolocalyx 5 Alpinia Zerumbet
Recommended publications
  • Phylogeny and Taxonomy of the Genus Elettaria Maton
    Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Maton Helena Båserud Mathisen Master of Science Thesis 2014 Department of Biosciences Faculty of Mathematics and Natural Sciences University of Oslo, Norway © Helena Båserud Mathisen 2014 Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Illustration on the front page: From White (1811) https://www.duo.uio.no/ Print: Reprosentralen, University of Oslo Acknowledgements There are plenty of people who deserve a big depth of gratitude when I hand in my master thesis today. First of all, I would like to thank my supervisors Axel Dalberg Poulsen, Charlotte Sletten Bjorå and Mark Newman for all help, patience and valuable input over the last 1.5 years, and especially the last couple of weeks. I could not have done this without you guys! Thanks to the approval of our research permit from the Forest Department in Sarawak, Axel and I were able to travel to Borneo and collect plants for my project. I would like to thank the Botanical Research Centre at Semenggoh Wildlife Centre in Sarawak, for all the help we got, and a special thanks goes to Julia, Ling and Vilma for planning and organizing the field trips for us. I would never have mastered the lab technics at Tøyen without good help and guideance from Audun. Thank you for answering my numerous questions so willingly. I would also like to thank My Hanh, Kjersti, Anette and Kine, for inviting me over for dinner and improving my draft and of course my fellow students at the botanical museum (Anne Marte, Karen and Øystein).
    [Show full text]
  • The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1
    American Journal of Botany 92(1): 167±178. 2005. THE MOLECULAR PHYLOGENY OF ALPINIA (ZINGIBERACEAE): A COMPLEX AND POLYPHYLETIC GENUS OF GINGERS1 W. J OHN KRESS,2,3,5 AI-ZHONG LIU,2 MARK NEWMAN,4 AND QING-JUN LI3 2Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012 USA; 3Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China; and 4Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Alpinia is the largest, most widespread, and most taxonomically complex genus in the Zingiberaceae with 230 species occurring throughout tropical and subtropical Asia. Species of Alpinia often predominate in the understory of forests, while others are important ornamentals and medicinals. Investigations of the evolutionary relationships of a subset of species of Alpinia using DNA sequence- based methods speci®cally test the monophyly of the genus and the validity of the previous classi®cations. Seventy-two species of Alpinia, 27 non-Alpinia species in the subfamily Alpinioideae, eight species in the subfamily Zingiberoideae, one species in the subfamily Tamijioideae, and three species in the outgroup genus Siphonochilus (Siphonochiloideae) were sequenced for the plastid matK region and the nuclear internal transcribed spacer (ITS) loci. Parsimony analyses of both individual and combined data sets identi®ed six polyphyletic clades containing species of Alpinia distributed across the tribe Alpinieae. These results were supported by a Bayesian analysis of the combined data set. Except in a few speci®c cases, these monophyletic groupings of species do not correspond with either Schumann's (1904) or Smith's (1990) classi®cation of the genus.
    [Show full text]
  • GORILLA Report on the Conservation Status of Gorillas
    Version CMS Technical Series Publication N°17 GORILLA Report on the conservation status of Gorillas. Concerted Action and CMS Gorilla Agreement in collaboration with the Great Apes Survival Project-GRASP Royal Belgian Institute of Natural Sciences 2008 Copyright : Adrian Warren – Last Refuge.UK 1 2 Published by UNEP/CMS Secretariat, Bonn, Germany. Recommended citation: Entire document: Gorilla. Report on the conservation status of Gorillas. R.C. Beudels -Jamar, R-M. Lafontaine, P. Devillers, I. Redmond, C. Devos et M-O. Beudels. CMS Gorilla Concerted Action. CMS Technical Series Publication N°17, 2008. UNEP/CMS Secretariat, Bonn, Germany. © UNEP/CMS, 2008 (copyright of individual contributions remains with the authors). Reproduction of this publication for educational and other non-commercial purposes is authorized without permission from the copyright holder, provided the source is cited and the copyright holder receives a copy of the reproduced material. Reproduction of the text for resale or other commercial purposes, or of the cover photograph, is prohibited without prior permission of the copyright holder. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of UNEP/CMS, nor are they an official record. The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of UNEP/CMS concerning the legal status of any country, territory or area, or of its authorities, nor concerning the delimitation of its frontiers and boundaries. Copies of this publication are available from the UNEP/CMS Secretariat, United Nations Premises.
    [Show full text]
  • Garden's Bulletin Part2 8.Indd
    Gardens’Siliquamomum Bulletin oreodoxa Singapore (Zingiberaceae): 61 (2): a New359-367. Species 2010 from Southern Vietnam 359 Siliquamomum oreodoxa (Zingiberaceae): a New Species from Southern Vietnam 1 2 3 N.S. LY , S. HUL AND J. LEONG-ŠKORNIČKOVÁ 1 The VNM Herbarium, Institute of Tropical Biology, 85 Tran Quoc Toan Road, District 3, Hochiminh City, Vietnam. E-mail: [email protected] 2 Département de Systématique et Évolution, Herbier (P)–Plantes vasculaires, 57 Rue Cuvier, 75231 Paris Cedex 05, France. E-mail: [email protected] 3 The Herbarium, Singapore Botanic Gardens, 1 Cluny Road, 259569 Singapore. Email: [email protected] Abstract The second species of Siliquamomum (Zingiberaceae), S. oreodoxa N.S.Ly & Škorničk., is described as new and illustrated. The two species in the genus are compared and a key is provided for their identification. Introduction The genus Siliquamomum was described by Baillon (1895) based on a collection made by Benedict Balansa in Lankok valley of Ba Vi Mountain, Tonkin (North Vietnam). The only representative of the genus known till date, S. tonkinense Baill., has also been reported from SE Yunnan, China (Wu and Larsen, 2000; Gao et al., 2005) where it is found in dense forests in mountain valleys at 600-800 m elevation. During an expedition in southern Vietnam in June 2008, the first author found a Siliquamomum species growing quite abundantly at ca 1500 m in a moist and shady area of Bidoup Nui Ba National Park. The type material of S. tonkinense (Balansa 4218, Nov 1887, 4 sheets, P) was located and examined and the original description by Gagnepain (1908) studied.
    [Show full text]
  • Leptosolena(Zingiberaceae)
    The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytetax. Geobet. S6 (]): 41-53 (200S) Return from the Lost: Rediscovery of the Presumed Extinct Leptosolena (Zingiberaceae) in the Philippines and its Phylogenetic Placement in Gingers HIDENOBU FUNAKOSHI]*, W. JOHN KRESS2, JANA gKORNIeKOVA3, AIZHONG LIU2 and KEN INOUE`' iDepartment qf'Environmental System Science, Graduate School ofScience and TlechnologM Shinshu U}iiversiijl 3- 2Dapartment 1-l Asahi, Matsumoto 390-862J Japan; ofBotany MRC-166, Uhited States Ndtional Herbarium, Museum Historpl IVational ofNZitural Smithsonian lnstitution, R O. Box 37012, Ukeshington, D,C 20013-7012 3Department 4Biolegicat USA; ofBotan>L Charles University, Bendtskd 2, J28 Ol, Prague, Czech Rqp"hlic; Institute and Herbarium, fuculty ofScience, Shinsht{ Universic)l 3-1-1 Asahi, Matsumoto 390-8621 Jopan The genus Leptosolena currently accepted as monotypic and endemic to the Philippines, has been con- sidered as an imperfectly known genus due to the description based on insucacient herbarium materi- als fOr describing fioral characters and no recent collection. Our rediscovery of L, haenkei has made it possible not only to describe the species in more depth from fresh materials and to compare with the uncertain second species, L. insignis, more precisely, but to clarify the phylogenetic position ameng Zingiberaceae with molecular data. Our results support the former treatment that L haenkei and L insig- nis are conspecific, resulting in L. insignis as a later synonym. The ]ectotype of L. haenkei is chosen among Haenke's historical colLections deposited at PR and PRC. Results from DNA sequence data of the ITS and tnatK loci demonstrate that Lqptosolena forms a clade with LEiizoverberghia and Aipinia species from the Philippines and Oceania.
    [Show full text]
  • New Records and Rediscoveries of Plants in Singapore
    Gardens' Bulletin Singapore 70 (1): 67–90. 2018 67 doi: 10.26492/gbs70(1).2018-08 New records and rediscoveries of plants in Singapore R.C.J. Lim1, S. Lindsay1, D.J. Middleton2, B.C. Ho2, P.K.F. Leong2, M.A. Niissalo2, P.C. van Welzen3, H.-J. Esser4, S.K. Ganesan2, H.K. Lua5, D.M. Johnson6, N.A. Murray6, J. Leong-Škorničková2, D.C. Thomas2 & Ali Ibrahim2 1Native Plant Centre, Horticulture and Community Gardening Division, National Parks Board, 100K Pasir Panjang Road, 118526, Singapore [email protected] 2Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore 3Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden 4Botanische Staatssammlung München, Menzinger Straße 67, München D-80638, Germany 5National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore 6Department of Botany & Microbiology, Ohio Wesleyan University, Delaware, OH 43015, U.S.A. ABSTRACT. The city-state of Singapore continues to provide many new records and rediscoveries of plant species in its nature reserves, offshore islands and secondary forests. Eleven new records for Singapore and eight rediscoveries of species previously presumed nationally extinct are reported here along with national conservation assessments. The new records are Albertisia crassa Forman, Arcangelisia flava (L.) Merr., Chaetocarpus castanocarpus (Roxb.) Thwaites, Dendrokingstonia nervosa (Hook.f. & Thomson) Rauschert, Dipterocarpus chartaceus Symington, Haplopteris sessilifrons (Miyam. & H.Ohba) S.Linds., Hewittia malabarica (L.) Suresh, Phyllanthus reticulatus Poir., Spermacoce parviceps (Ridl.) I.M.Turner, Sphaeropteris trichodesma (Scort.) R.M.Tryon and Uvaria micrantha (A.DC.) Hook.f. & Thomson. The rediscoveries are Callerya dasyphylla (Miq.) Schot, Cocculus orbiculatus (L.) DC., Lecananthus erubescens Jack, Loeseneriella macrantha (Korth.) A.C.Sm., Mapania squamata (Kurz) C.B.Clarke, Plagiostachys lateralis (Ridl.) Ridl., Scolopia macrophylla (Wight & Arn.) Clos and Spatholobus maingayi Prain ex King.
    [Show full text]
  • Rich Zingiberales
    RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: The Tree of Death: The Role of Fossils in Resolving the Overall Pattern of Plant Phylogeny Building the monocot tree of death: Progress and challenges emerging from the macrofossil- rich Zingiberales Selena Y. Smith1,2,4,6 , William J. D. Iles1,3 , John C. Benedict1,4, and Chelsea D. Specht5 Manuscript received 1 November 2017; revision accepted 2 May PREMISE OF THE STUDY: Inclusion of fossils in phylogenetic analyses is necessary in order 2018. to construct a comprehensive “tree of death” and elucidate evolutionary history of taxa; 1 Department of Earth & Environmental Sciences, University of however, such incorporation of fossils in phylogenetic reconstruction is dependent on the Michigan, Ann Arbor, MI 48109, USA availability and interpretation of extensive morphological data. Here, the Zingiberales, whose 2 Museum of Paleontology, University of Michigan, Ann Arbor, familial relationships have been difficult to resolve with high support, are used as a case study MI 48109, USA to illustrate the importance of including fossil taxa in systematic studies. 3 Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley, CA 94720, USA METHODS: Eight fossil taxa and 43 extant Zingiberales were coded for 39 morphological seed 4 Program in the Environment, University of Michigan, Ann characters, and these data were concatenated with previously published molecular sequence Arbor, MI 48109, USA data for analysis in the program MrBayes. 5 School of Integrative Plant Sciences, Section of Plant Biology and the Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA KEY RESULTS: Ensete oregonense is confirmed to be part of Musaceae, and the other 6 Author for correspondence (e-mail: [email protected]) seven fossils group with Zingiberaceae.
    [Show full text]
  • Vase Life of Floral and Vegetative Stems of Costaceae(1)
    MARCOS ANTONIO DA SILVA JÚNIOR et. al 443 SCIENTIFIC ARTICLE Vase life of floral and vegetative stems of Costaceae(1) MARCOS ANTONIO DA SILVA JÚNIOR(2), PETTERSON BAPTISTA DA LUZ(2)*, CAROLINA DE FARIA CABRAL PAES PEREIRA E BARROS(2), CAROLINA MOREIRA DE MEDEIROS(2) ABSTRACT This study aimed to evaluate the vase life of floral and vegetative stems of Costaceae and describe their morphological characteristics. To evaluate the vase life of floral and vegetative stems, four and six species were used, respectively. Three cutting stages were established for floral stems. Stems were cut a few days before flower opening at stage 1, upon opening of the first flower(s) (anthesis) at stage 2, and when floral stems showed more than 15 opened flowers at stage 3. However, only two different stages were applied for each species. Floral stems were standardized with 50 cm in length, while vegetative stems were standardized with 70 cm in length. The morphological characteristics determined for floral stems included diameter of the floral stem, length of inflorescence, diameter of inflorescence and fresh mass of floral stem. For vegetative stems, we considered diameter and fresh mass. After the first evaluation, stems were maintained at 22 ºC and 53% of humidity. The total number of post-harvest days (global longevity) in which the quality of floral and vegetative stems was acceptable were evaluated. The highest vase life for floral stems at stage 1 was observed for Costus woodsoni, Costus arabicus x Costus spiralis (Costus Tropicales), and Costus scaber. Hellenia speciosa showed higher vase life at stage 3.
    [Show full text]
  • The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Supplementary Data Table S1 the Reference and Number of Pseudo
    Supplementary Data Table S1 The reference and number of pseudo informants of medicinal plants used to treat Musculoskeletal disorders (MSDs) among the Karen ethnic minority in Thailand. Scientific Family No. Pseudo Part of Use Preparation Application ICPC-2 2nd Level Refere Name informants nce Acanthus ACANTHACEAE 1 Leaves Decoction Oral Muscle pain [1] montanus ingestion (Nees) T. Anderson Acmella oleracea ASTERACEAE 1 Roots Alcoholic Oral Muscle pain [1] (L.) R.K. Jansen infusion ingestion Ageratina ASTERACEAE 1 Leaves Burning Poultices Muscle pain [2] adenophora (Spreng.) R.M. King and H. Rob. Ageratum ASTERACEAE 1 Whole Decoction Oral Back [3] conyzoides L. plants ingestion symptom/compla int, Flank/axilla symptom/compla int Aglaia lawii MELIACEAE 1 Leaves Decoction Bath, oral Muscle pain [4] (Wight) C.J. ingestion Saldanha Alpinia galanga ZINGIBERACEAE 1 Roots Decoction Oral Back [5] (L.) Willd. ingestion symptom/compla int, Flank/axilla symptom/compla int Alpinia ZINGIBERACEAE 1 Roots Decoction Bath, oral Muscle pain [2] roxburghii ingestion Sweet Alstonia APOCYNACEAE 1 Bark Water Oral Muscle pain [6] macrophylla infusion ingestion Wall. ex G. Don Alstonia rostrata APOCYNACEAE 1 Bark Decoction, Oral Muscle pain [2] C.E.C. Fisch. water ingestion infusion Anredera BASELLACEAE 1 Bulbil Cook Eaten as Back [3] cordifolia (Ten.) food symptom/compla Steenis int, Flank/axilla symptom/compla int Antidesma EUPHORBIACEAE 1 Roots Decoction Oral Back [5] bunius (L.) ingestion symptom/compla Spreng. int, Flank/axilla symptom/compla int Asparagus ASPARAGACEAE 2 Roots, whole Decoction Bath, oral Muscle pain [1,5] filicinus Buch.- plants ingestion Ham. ex D. Don Baccaurea EUPHORBIACEAE 1 Roots Decoction Oral Back [5] ramiflora Lour.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]