The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1 American Journal of Botany 92(1): 167±178. 2005. THE MOLECULAR PHYLOGENY OF ALPINIA (ZINGIBERACEAE): A COMPLEX AND POLYPHYLETIC GENUS OF GINGERS1 W. J OHN KRESS,2,3,5 AI-ZHONG LIU,2 MARK NEWMAN,4 AND QING-JUN LI3 2Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012 USA; 3Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China; and 4Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Alpinia is the largest, most widespread, and most taxonomically complex genus in the Zingiberaceae with 230 species occurring throughout tropical and subtropical Asia. Species of Alpinia often predominate in the understory of forests, while others are important ornamentals and medicinals. Investigations of the evolutionary relationships of a subset of species of Alpinia using DNA sequence- based methods speci®cally test the monophyly of the genus and the validity of the previous classi®cations. Seventy-two species of Alpinia, 27 non-Alpinia species in the subfamily Alpinioideae, eight species in the subfamily Zingiberoideae, one species in the subfamily Tamijioideae, and three species in the outgroup genus Siphonochilus (Siphonochiloideae) were sequenced for the plastid matK region and the nuclear internal transcribed spacer (ITS) loci. Parsimony analyses of both individual and combined data sets identi®ed six polyphyletic clades containing species of Alpinia distributed across the tribe Alpinieae. These results were supported by a Bayesian analysis of the combined data set. Except in a few speci®c cases, these monophyletic groupings of species do not correspond with either Schumann's (1904) or Smith's (1990) classi®cation of the genus. Here we build on previous molecular analyses of the Alpinioideae and propose the next steps necessary to recognize new generic boundaries in the Alpinieae. Key words: Alpinia; ¯existyly; gingers; ITS; matK; phylogeny; tropical; Zingiberaceae. Alpinia Roxb. is the largest and most widespread genus in & S.J. Chen and A. blepharocalyx K. Schum.) the plants form the Zingiberaceae with some 230 species occurring from Sri large stands in the understory, along forest margins, and in Lanka and the Western Ghats of India to China, Japan, all of light gaps, while other species are dominant in wetlands and southeast Asia, the Paci®c as far as Fiji, Samoa, and the Car- along water courses [e.g., A. nigra (Gaertn.) B.L. Burtt]. Al- oline Islands, and Australia as far south as northern New South though most alpinias are pollinated by large bees, some spe- Wales (Larsen et al., 1998; Smith, 1990). Most species grow cies attract birds and even bats as pollinators (Zhang et al., in low- to mid-elevation forests and form clumps with stems 2003; Kress and Specht, in press). Flexistyly, a novel ¯oral from 1±3 m high, although species east of Wallace's Line tend mechanism promoting outcrossing in which styles move up or to grow much larger. Alpinia regia R.M. Sm. of the Moluccas down depending on the timing of anther dehiscence, has been and A. boia Seem. of Fiji, for example, reach over 8 m in described in a number of species of Alpinia (Li et al., 2001, height. Some species are found in montane forests up to 2000 2002; Zhang et al., 2003). m above sea level in New Guinea and Sulawesi. However, The generic name Alpinia was ®rst used by Linnaeus for very few are tolerant of frost. The most northerly species is Alpinia racemosa, a neotropical species. Many Asiatic species Alpinia japonica (Thunb.) Miq., which survives north of To- were added to Alpinia, while later authors tended to refer kyo where the winters can be severe. Several species are im- American species to Renealmia L.f. Schumann (1904) ®nal- portant ornamentals (e.g., A. purpurata (Vieill.) K. Schum.) as ized these taxonomic concepts and subsequently Alpinia Roxb. potted plants, landscape accents, and cut ¯owers, and at least was conserved for the Asiatic species with Alpinia galanga one (A. zerumbet (Pers.) B.L. Burtt & R.M. Sm.) is naturalized (L.) Willd. as its type. in tropical regions around the world. In Asia, especially China Alpinia is the type genus of the tribe Alpinieae A. Rich. of (Wu and Larsen, 2000), alpinias are used as medicinals (e.g., the family Zingiberaceae. This tribe consists of evergreen A. of®cinarum Hance) and in cooking [A. galanga (L.) Willd.]. herbs, in which an abscission layer between the rhizome and Alpinias play an important ecological role in the understory the leafy shoots is lacking, the plane of distichy of the leaves of tropical and subtropical forests where many species are is transverse to the direction of growth of the rhizome, and quite common. In some cases (e.g., A. kwangsiensis T.L. Wu the lateral staminodes of the ¯owers are small, reduced to swellings at either side of the base of the labellum, or are 1 Manuscript received 26 March 2004; revision accepted 16 September entirely absent. Extra¯oral nectaries are absent, and the fruit 2004. The authors thank Ray Baker, Mike Bordelon, Jiang-Yun Gao, Mary Gibby, is usually spherical and indehiscent or ¯eshy (Kress et al., David Harris, Kai Larsen, Jing-Ping Liao, Ida Lopez, Achariya Rangsiruji, Chel- 2002). sea Specht, and Yong-Mei Xia, for discussion, assistance, and tissue samples Within the tribe Alpinieae, generic limits are dif®cult to dis- that made this investigation possible. This work was funded by the key project cern. While some genera may be easily recognized by their of the Ministry of Science and Technology of China (2001CCA00300), the respective morphological characters and/or geographic distri- National Natural Science Foundation of China Grants 30225007 and 30170069, the Smithsonian Scholarly Studies Program and the Biotic Surveys and Inven- bution (e.g., Aframomum, Elettaria, Hornstedtia, Burbidgea), tories Program of the National Museum of Natural History. it is hard to identify an apomorphy or universal character for 5 E-mail: [email protected]. species currently assigned to Alpinia. Virtually all species 167 168 AMERICAN JOURNAL OF BOTANY [Vol. 92 Figs. 1±9. Representative ¯oral types of the major groups of species of Alpinia. 1. Alpinia nigra. 2. A. galanga. 3. A. conchigera. 4. A. carolinensis. 5. A. zerumbet. 6. A. guangdongensis. 7. A. calcarata. 8. A. oxyphylla. 9. A. elegans. ¯ower terminally on the leafy shoots and all are Asiatic. These in¯orescence and ¯ower characters. Much variation exists in characters distinguish Alpinia from the Afro-American Re- these features (Figs. 1±9), from species with branched in¯o- nealmia, in which most species produce in¯orescences on a rescences and long cincinni subtended by bracts in which the separate, lea¯ess shoot from the rhizome, but do not uniquely ¯owers are each subtended by bracteoles, to other species with separate it from other members of the Alpinieae. Therefore, to no bracts or bracteoles and cincinni of only a single ¯ower. In a large degree, one is forced to recognize Alpinia only by the Flora of British India, Baker (1894) considered the species eliminating other genera, i.e., it is distinguished only by the of Alpinia that occur from Sri Lanka to Singapore. His account plesiomorphic characters of the tribe. included descriptions of 17 species from a known total of 30 Several attempts have been made to divide Alpinia into at that time and divided them into two subgenera and two smaller genera by elevating some of the more coherent groups sections according to the presence of an anther crest, the pos- of species to the generic rank. Holttum (1950) applied the session of large bracteoles, and the position of the in¯ores- name Alpinia to a small group of species with funnel-shaped cence. Schumann (1904) treated Alpinia throughout its range bracteoles and allocated the remaining species to Catimbium, in his account of the Zingiberaceae for Das P¯anzenreich (Ta- Cenolophon, and Languas. Several nomenclatural problems ble 1) dividing it into ®ve subgenera and 27 sections. Eight were present in this system, but its principal failing was that of Schumann's sections have now been placed in entirely dif- it only worked for the species of Malaysia. Later authors, ferent genera, leaving Alpinia with ®ve subgenera and 19 sec- therefore, returned to the concept of Alpinia sensu Schumann tions. Characteristics of the bracts and bracteoles are the most until Smith (1990) recognized a group of 22 species in New important diagnostic features in Schumann's classi®cation. Guinea that she segregated under the generic name Pleuran- Valeton (1913) later divided section Eubractea into subsection thodium (K. Schum.) R.M. Sm. Eustales and subsection Kolowratia and added a new section Infrageneric classi®cations of Alpinia have been based on Monanthocrater to Schumann's 1904 system. He admitted that January 2005] KRESS ET AL.ÐPHYLOGENY OF ALPINIA 169 TABLE 1. Infrageneric classi®cation of Alpinia according to Schumann (1904). Accepted generic Corresponding clades of Subgenus Section position molecular analyses Autalpinia Pycnopyramis 5 Plagiostachys Zerumbet (IV) Leptosolenia 5 Leptosolena Eubractea (V) Hellenia 5 Alpinia Galanga (II), Zerumbet (IV), Eubractea (V) Psychanthus 5 Pleuranthodium Tribe Riedelieae Cenolophon 5 Alpinia not represented Pleuranthodium 5 Pleuranthodium Tribe Riedelieae Guillania 5 Alpinia Eubractea (V) Probolocalyx 5 Alpinia Zerumbet (IV) Catimbium Flos Paradisi 5 Alpinia Zerumbet (IV) Boniophyton 5 Alpinia Zerumbet (IV) Dieramalpinia
Recommended publications
  • Phylogeny and Taxonomy of the Genus Elettaria Maton
    Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Maton Helena Båserud Mathisen Master of Science Thesis 2014 Department of Biosciences Faculty of Mathematics and Natural Sciences University of Oslo, Norway © Helena Båserud Mathisen 2014 Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Illustration on the front page: From White (1811) https://www.duo.uio.no/ Print: Reprosentralen, University of Oslo Acknowledgements There are plenty of people who deserve a big depth of gratitude when I hand in my master thesis today. First of all, I would like to thank my supervisors Axel Dalberg Poulsen, Charlotte Sletten Bjorå and Mark Newman for all help, patience and valuable input over the last 1.5 years, and especially the last couple of weeks. I could not have done this without you guys! Thanks to the approval of our research permit from the Forest Department in Sarawak, Axel and I were able to travel to Borneo and collect plants for my project. I would like to thank the Botanical Research Centre at Semenggoh Wildlife Centre in Sarawak, for all the help we got, and a special thanks goes to Julia, Ling and Vilma for planning and organizing the field trips for us. I would never have mastered the lab technics at Tøyen without good help and guideance from Audun. Thank you for answering my numerous questions so willingly. I would also like to thank My Hanh, Kjersti, Anette and Kine, for inviting me over for dinner and improving my draft and of course my fellow students at the botanical museum (Anne Marte, Karen and Øystein).
    [Show full text]
  • Alpinia Galanga (L.) Willd
    TAXON: Alpinia galanga (L.) Willd. SCORE: 5.0 RATING: Low Risk Taxon: Alpinia galanga (L.) Willd. Family: Zingiberaceae Common Name(s): false galangal Synonym(s): Languas galanga (L.) Stuntz greater galanga Maranta galanga L. languas Siamese-ginger Thai ginger Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Jun 2016 WRA Score: 5.0 Designation: L Rating: Low Risk Keywords: Rhizomatous, Naturalized, Edible, Self-Compatible, Pollinator-Limited Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) Low 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 16 Jun 2016 (Alpinia galanga (L.) Willd.) Page 1 of 15 TAXON: Alpinia galanga (L.) Willd.
    [Show full text]
  • Alpinia Zerumbet Variegata & Alpinia Purpurata
    ALPINIA ZERUMBET VARIEGATA & ALPINIA PURPURATA PLANT NAME: ALPINIA ZERUMBET VARIEGATA (VARIEGATED GINGER) & ALPINIA PURPURATA PRODUCT FORM: CP 72 (VARIEGATA) & RC CLUMP (PURPURATA) HARDINESS ZONE(S): 9-12. Root hardy in zone 8. zerumbet ‘Var. Ginger’ Growth Rates Varies by season, growing TEMPERATURE: Production in or above 65℉ + at night facility, and desired finish and 85℉ during the day for optimum growth. Below 50℉ height. will dramatically slow production time. Below 35℉ can result in cold burn. Frost will damage exposed leaves, but • 6” pot to finish = will not kill the plant. approximately 5-6 months. LIGHT LEVELS/INTENSITY: 50-65% shade will produce *Alpinia purpurata is not purpurata ‘Pink’* clean foliage and maintain coloration with good growth suitable for a 6” pot rates. Levels above 80% shade will produce semi-stretched foliage and may result in more green and less desirable • 8” pot to finish = variegation. Plants can be grown in full sun, but will require approximately 7-9 months more fertilizer and more attention to watering. Leaf rolling or curling indicates there is excessive light (or conditions are too dry). • 10” pot to finish = approximately 8-12 FERTILIZER: Use balanced fertilizer. Best if incorporated in months purpurata ‘Red’* soil mix. Maintain high levels of magnesium. Product Uses *Alpinia purpurata generally blooms about 18 mos. after DISEASES: Although it is rare, edges can burn if the soluble • Combo pots planting. It is frequently sold salts are kept too high or the plants have repeated dry with a picture tag with the cycles resulting in too much plant stress. • Large accent for mixed flower prominently beds displayed.
    [Show full text]
  • Leptosolena(Zingiberaceae)
    The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytetax. Geobet. S6 (]): 41-53 (200S) Return from the Lost: Rediscovery of the Presumed Extinct Leptosolena (Zingiberaceae) in the Philippines and its Phylogenetic Placement in Gingers HIDENOBU FUNAKOSHI]*, W. JOHN KRESS2, JANA gKORNIeKOVA3, AIZHONG LIU2 and KEN INOUE`' iDepartment qf'Environmental System Science, Graduate School ofScience and TlechnologM Shinshu U}iiversiijl 3- 2Dapartment 1-l Asahi, Matsumoto 390-862J Japan; ofBotany MRC-166, Uhited States Ndtional Herbarium, Museum Historpl IVational ofNZitural Smithsonian lnstitution, R O. Box 37012, Ukeshington, D,C 20013-7012 3Department 4Biolegicat USA; ofBotan>L Charles University, Bendtskd 2, J28 Ol, Prague, Czech Rqp"hlic; Institute and Herbarium, fuculty ofScience, Shinsht{ Universic)l 3-1-1 Asahi, Matsumoto 390-8621 Jopan The genus Leptosolena currently accepted as monotypic and endemic to the Philippines, has been con- sidered as an imperfectly known genus due to the description based on insucacient herbarium materi- als fOr describing fioral characters and no recent collection. Our rediscovery of L, haenkei has made it possible not only to describe the species in more depth from fresh materials and to compare with the uncertain second species, L. insignis, more precisely, but to clarify the phylogenetic position ameng Zingiberaceae with molecular data. Our results support the former treatment that L haenkei and L insig- nis are conspecific, resulting in L. insignis as a later synonym. The ]ectotype of L. haenkei is chosen among Haenke's historical colLections deposited at PR and PRC. Results from DNA sequence data of the ITS and tnatK loci demonstrate that Lqptosolena forms a clade with LEiizoverberghia and Aipinia species from the Philippines and Oceania.
    [Show full text]
  • Vase Life of Floral and Vegetative Stems of Costaceae(1)
    MARCOS ANTONIO DA SILVA JÚNIOR et. al 443 SCIENTIFIC ARTICLE Vase life of floral and vegetative stems of Costaceae(1) MARCOS ANTONIO DA SILVA JÚNIOR(2), PETTERSON BAPTISTA DA LUZ(2)*, CAROLINA DE FARIA CABRAL PAES PEREIRA E BARROS(2), CAROLINA MOREIRA DE MEDEIROS(2) ABSTRACT This study aimed to evaluate the vase life of floral and vegetative stems of Costaceae and describe their morphological characteristics. To evaluate the vase life of floral and vegetative stems, four and six species were used, respectively. Three cutting stages were established for floral stems. Stems were cut a few days before flower opening at stage 1, upon opening of the first flower(s) (anthesis) at stage 2, and when floral stems showed more than 15 opened flowers at stage 3. However, only two different stages were applied for each species. Floral stems were standardized with 50 cm in length, while vegetative stems were standardized with 70 cm in length. The morphological characteristics determined for floral stems included diameter of the floral stem, length of inflorescence, diameter of inflorescence and fresh mass of floral stem. For vegetative stems, we considered diameter and fresh mass. After the first evaluation, stems were maintained at 22 ºC and 53% of humidity. The total number of post-harvest days (global longevity) in which the quality of floral and vegetative stems was acceptable were evaluated. The highest vase life for floral stems at stage 1 was observed for Costus woodsoni, Costus arabicus x Costus spiralis (Costus Tropicales), and Costus scaber. Hellenia speciosa showed higher vase life at stage 3.
    [Show full text]
  • Native Ginger, Alpinia Caerulea, Is a Particularly Attractive Australian
    Native Ginger, Alpinia caerulea, is a particularly attractive Australian native rainforest understory plant that is now popular not only as a garden plant but also as an indoor plant! This hardy perennial is a native of rainforests and wet sclerophyll forests along the east coast of Australia, from Gosford just north of Sydney, all the way to Cape York in tropical far north Queensland. Native Ginger is related to edible ginger (Zingiber officinale), also to cardamom (Ammomum and Elettaria species), turmeric (Curcuma) and galangal (Alpinia galanga). All belong to the Zingiberaceae, a very large family which includes over 1300 species of perennials with well-developed rhizomes from Australia, Asia, Africa and the Americas. Native Ginger produces creamy white flowers which are followed by an abundance of dark blue globular fruits (capsules). In far north Queensland, these are eaten by Cassowaries. An internet search will provide much information about the many ways in which the Native Ginger can be used, however, we advise caution before trying any of these options. The fleshy outer layer of the blue fruit can apparently be eaten but not the seeds. In some areas, it has been said that Aboriginal tracks could be found by following a trail of discarded seeds. The roots and stems apparently have a ginger flavour and food wrapped in native ginger leaves will take on a gingery flavour during cooking. The fruit, including seeds, can be dried and ground to make a tisane (herbal tea). We have not tried any of these. Look for Native Ginger, currently in fruit, in the Bush Tucker Garden on the southern side of Building F7B and in the garden on the SW corner of Biology Buildings E8A andE8C.
    [Show full text]
  • A Review on Phytochemical and Pharmacological Potential of Alpinia Galanga
    Pharmacogn J. 2018; 10(1): 9-15 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Review Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net A Review on Phytochemical and Pharmacological Potential of Alpinia galanga Anirban Chouni, Santanu Paul* ABSTRACT Introduction: From the ancient Vedic era, green plants are being used for their medicinal properties to treat several diseases. Green plants represent a big source of bioactive com- pounds. Alpinia galanga (Linn.) of Zingiberaceae family is one amongst those medicinally important plants. Different parts of the plant are used in the treatment of many diseases for its anti-fungal, anti-tumour, antimicrobial, anti-inflammatory, anti-diabetic, antioxidant, anti- ulcer and many other properties. Several active compounds such as 1’S-1’-acetoxychavicol ac- etate, 1’S-1’-acetoxyeuginol acetate, 1, 8-cineol, α-fenchyl acetate, β-farnesene, β-bisabolene, α-bergamotene, β-pinene, β-Sitosteroldiglucoside (AG-7), β-sitsteryl Arabinoside (AG-8), 1’-acetoxychavicol acetate (galangal acetate), p-hydroxycinnamaldehyde has been extracted from the plant. Methods: Relevant information was collected from scientific journals, books, and reports via electronic search using Medline, PubMed, Science Direct and Scopus. Re- sults: This review provides a comprehensive report on Alpinia galanga having anti-prolifera- tive, apoptotic, anti angiogenic as well as cytotoxic efficacy and their mode of actionin vitro as well as in vivo condition. Conclusion: Considering the ability of the golden treasure present in Alpinia galanga, this review is aimed to summarize the information of the chemical constitu- ents, pharmacological and therapeutic effects of the plant. Key words: Alpinia galanga, 1’s’-1’- Acetoxychavicolacetate, Anticancer, Antimicrobial, Bioactivity.
    [Show full text]
  • Supplementary Data Table S1 the Reference and Number of Pseudo
    Supplementary Data Table S1 The reference and number of pseudo informants of medicinal plants used to treat Musculoskeletal disorders (MSDs) among the Karen ethnic minority in Thailand. Scientific Family No. Pseudo Part of Use Preparation Application ICPC-2 2nd Level Refere Name informants nce Acanthus ACANTHACEAE 1 Leaves Decoction Oral Muscle pain [1] montanus ingestion (Nees) T. Anderson Acmella oleracea ASTERACEAE 1 Roots Alcoholic Oral Muscle pain [1] (L.) R.K. Jansen infusion ingestion Ageratina ASTERACEAE 1 Leaves Burning Poultices Muscle pain [2] adenophora (Spreng.) R.M. King and H. Rob. Ageratum ASTERACEAE 1 Whole Decoction Oral Back [3] conyzoides L. plants ingestion symptom/compla int, Flank/axilla symptom/compla int Aglaia lawii MELIACEAE 1 Leaves Decoction Bath, oral Muscle pain [4] (Wight) C.J. ingestion Saldanha Alpinia galanga ZINGIBERACEAE 1 Roots Decoction Oral Back [5] (L.) Willd. ingestion symptom/compla int, Flank/axilla symptom/compla int Alpinia ZINGIBERACEAE 1 Roots Decoction Bath, oral Muscle pain [2] roxburghii ingestion Sweet Alstonia APOCYNACEAE 1 Bark Water Oral Muscle pain [6] macrophylla infusion ingestion Wall. ex G. Don Alstonia rostrata APOCYNACEAE 1 Bark Decoction, Oral Muscle pain [2] C.E.C. Fisch. water ingestion infusion Anredera BASELLACEAE 1 Bulbil Cook Eaten as Back [3] cordifolia (Ten.) food symptom/compla Steenis int, Flank/axilla symptom/compla int Antidesma EUPHORBIACEAE 1 Roots Decoction Oral Back [5] bunius (L.) ingestion symptom/compla Spreng. int, Flank/axilla symptom/compla int Asparagus ASPARAGACEAE 2 Roots, whole Decoction Bath, oral Muscle pain [1,5] filicinus Buch.- plants ingestion Ham. ex D. Don Baccaurea EUPHORBIACEAE 1 Roots Decoction Oral Back [5] ramiflora Lour.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • Ornamental Costus (1)
    DAVE SKINNER 307 TECHNICAL ARTICLE Ornamental Costus (1) DAVE SKINNER (2)* ABSTRACT In recent years the spiral gingers (genus Costus) have become more and more popular as ornamental garden plants. Dave Skinner describes these plants, including his approach to identification of New World Costus, corrections to some common identification errors, information about cold hardy species, and information about Costus hybrids and cultivars. Keywords: spiral gingers, Costus, identification 1. INTRODUCTION had persisted for many years. I was fortunate that in the 1970’s Dr. Paul Maas had published a complete monograph About 20 years ago I began to focus my gardening of the neo-tropical species, with an identification key, full interests on gingers, and ultimately on the so-called “spiral descriptions and illustrations. gingers” in the plant family Costaceae. I was enthralled by Then in 2005 I made my first trip to the tropics to see the diversity of flowering forms and colors and the beautiful these wonderful plants in the wild growing in their native spiraling architecture of these plants. I soon found there habitats. I was hooked! I absolutely fell in love with the were some species of Costus that grew to 3 meters and sights and smells and sounds of the tropical forests and more in height, while others such as the African species would follow that first trip to Costa Rica with many more Costus spectabilis is flat to the ground with a mere height trips, at every opportunity, to see these plants in Costa Rica, of a few centimeters. In some species the leaves are deep Panama, Mexico, Colombia, Ecuador, Peru, Guyana and forest green in color with a silvery mid-rib stripe, others are Brazil.
    [Show full text]
  • The Evolution of Elettariopsis (Zingiberaceae) Evoluce Rodu Elettariopsis (Zingiberaceae)
    Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Biologie Studijní obor: Cévnaté rostliny Kristýna Hlavatá The evolution of Elettariopsis (Zingiberaceae) Evoluce rodu Elettariopsis (Zingiberaceae) Diplomová práce Školitel: Mgr. Tomáš Fér, Ph.D. Konzultant: Dr. Jana Leong-Škorničková Prohlášení: Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu. V Praze dne 14. 08. 2014 Podpis 2 Abstract This work attempts to offer an insight into the problematic of the genus Elettariopsis Baker, the last unrevised genus in the subfamily Alpinioideae (Zingiberaceae). Phylogenetic analyses are performed on ITS, matK and DCS sequence data and correlated with absolute genome size and biogeographical distribution of the samples. Elettariopsis as a genus is found to be weakly supported and strongly supported only with the addition of some species of Amomum Roxb., including the type species A. subulatum. The absolute genome size in this group is greater than in the outgroup represented by members of the Zingiberoideae subfamily. The evidence given by sequence data further suggests that Elettariopsis is divided into two well-supported groups, the “E. curtisii” group and the “E. triloba/E. unifolia” group, each of which contains several well-supported clades. In the analysis of absolute genome size it is shown that the absolute genome size in the “E. triloba/E.unifolia” group is higher than in the “E. curtisii” group. These two groups also differ slightly in their biogeographical distribution, with group G being distributed in only in Vietnam, Laos, and Thailand, while members of group H are also occurring in Singapore and Indonesia (Borneo).
    [Show full text]
  • Zingiberaceae) from Palawan, Philippines
    Gardens' Bulletin Singapore 71 (2): 445–457. 2019 445 doi: 10.26492/gbs71(2).2019-13 A new species of Hornstedtia and a new species record of Globba (Zingiberaceae) from Palawan, Philippines R.V.A. Docot1, N.P. Mendez2,3 & C.B.M. Domingo4 1 Department of Biological Sciences, Institute of Art and Sciences, Far Eastern University, Nicanor Reyes Sr. Street, Sampaloc 1015, Manila, Philippines [email protected] 2 Department of Biology, College of Arts and Sciences, Central Mindanao University, University Town, Musuan, 8710 Bukidnon, Philippines 3 Centre for Biodiversity Research and Extension in Mindanao (CEBREM), Central Mindanao University, University Town, Musuan, 8710 Bukidnon, Philippines 4 The Graduate School, University of Santo Tomas, España Boulevard, Sampaloc 1008, Manila,Philippines ABSTRACT. During recent botanical exploration in the province of Palawan, Philippines specimens were collected of a new species, Hornstedtia crispata Docot, and a new species record for the Philippines, Globba francisci Ridl., both from the ginger family Zingiberaceae. The new species is described and illustrated here along with an assessment of its conservation status. Keywords. Borneo, endangered, Globba aurea, Hornstedtia hainanensis, Hornstedtia sanhan Introduction Palawan is an archipelagic province comprising of approximately 1,780 islands and islets at about 14,897 km2, making it the largest province in the Philippines (Fernandez et al., 2002). About 48% of the province is covered with vegetation, including tropical lowland evergreen rainforest, lowland semi-deciduous (seasonal/monsoon) forest, montane forest, and forest-over-limestone (PCSDS, 2015). Within this remaining forest are unique species of terrestrial flora and fauna, including 1700−3500 angiosperms, of which 15−20% are endemic to the country (Sopsop & Buot, 2009).
    [Show full text]