The Consequences of Buffelgrass Pasture Development for Biodiversity in the Southern Sonoran Desert

Total Page:16

File Type:pdf, Size:1020Kb

The Consequences of Buffelgrass Pasture Development for Biodiversity in the Southern Sonoran Desert The Consequences of Buffelgrass Pasture Development for Biodiversity in the Southern Sonoran Desert Item Type text; Electronic Dissertation Authors Franklin, Kimberly Anne Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 13:06:37 Link to Item http://hdl.handle.net/10150/195818 THE CONSEQUENCES OF BUFFELGRASS PASTURE DEVELOPMENT FOR BIODIVERSITY IN THE SOUTHERN SONORAN DESERT by Kimberly Anne Franklin _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Kimberly Franklin entitled The Consequences of Buffelgrass Pasture Development for Biodiversity in the Southern Sonoran Desert and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ____________________________________________________________Date: 5/1/09 Therese Markow ____________________________________________________________Date: 5/1/09 Fransciso Molina-Freaner ___________________________________________________________Date: 5/1/09 Stuart Marsh ___________________________________________________________Date: 5/1/09 Yves Carriere ___________________________________________________________Date: 5/1/09 Diana Wheeler Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ____________________________________________________________Date: 5/1/09 Dissertation Director: Therese Markow 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Kimberly Anne Franklin 4 ACKNOWLEDGEMENTS I would like to thank my advisor Therese Markow, who introduced me to the beautiful state of Sonora, Mexico and encouraged me to apply for funding to work internationally. Perhaps most importantly, she introduced me to her friend Francisco Molina-Freaner, whom essentially has served as a co-advisor to me for the past four years and has become a dear friend. His enormous generosity enabled me to pursue an ambitious research agenda in Sonora. I would also like to thank José Martinez Rodriguez, Jechu, my trusted field companion. I don’t know that I have ever encountered an individual with a work ethic as admirable as that of Jechu. Without his willingness to accompany me day after day in the field during the grueling Sonoran summers, I would not have been able to accomplish this work. Sharon Richards deserves so many thanks for always going far beyond the call of duty simply to make the lives of the Insect Science students that much easier, and I am indebted to Wendy Moore for her support and guidance in the beginnings of my graduate career, without which I would have been lost! Finally, I would like to thank Rick Brusca for inspiring me to pursue a career in conservation biology and helping me on my way, hopefully to follow in his footsteps and contribute to the preservation of the uniquely beautiful and still wild landscapes of Sonora, Mexico. 5 TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................................... 4 ABSTRACT.......................................................................................................................................................... 6 INTRODUCTION ............................................................................................................................................... 8 An explanation of the problem and review of the literature .......................................................................... 8 An explanation of the dissertation format....................................................................................................... 9 PRESENT STUDY ............................................................................................................................................ 11 REFERENCES...................................................................................................................................................13 APPENDIX A - BUFFELGRASS (PENNISETUM CILIARE) LAND CONVERSION AND PRODUCTIVITY IN THE PLAINS OF SONORA, MEXICO................................................................. 14 Abstract ...........................................................................................................................................................16 Materials and Methods................................................................................................................................... 20 Results..............................................................................................................................................................26 Discussion .......................................................................................................................................................30 References .......................................................................................................................................................35 APPENDIX B - THE CONSEQUENCES OF PASTURE DEVELOPMENT FOR PLANT DIVERSITY IN THE DRYLANDS OF NORTHERN MEXICO .............................................................51 Abstract ...........................................................................................................................................................53 Introduction.....................................................................................................................................................54 Methods ...........................................................................................................................................................59 Results..............................................................................................................................................................64 Discussion .......................................................................................................................................................67 Conclusion.......................................................................................................................................................74 References .......................................................................................................................................................75 APPENDIX C - THE EFFECTS OF LAND USE CHANGE AND PRODUCTIVITY ON ANT ASSEMBLAGES IN THE SOUTHERN SONORAN DESERT................................................................91 Abstract ...........................................................................................................................................................93 Methods ...........................................................................................................................................................98 Results............................................................................................................................................................106 Discussion .....................................................................................................................................................111 References .....................................................................................................................................................123 6 ABSTRACT Decades of overgrazing have left many rangelands in northwestern Mexico in poor condition. This has led to the practice of converting native rangeland plant communities to buffelgrass pastures. Buffelgrass (Pennisetum ciliare) is a perennial bunchgrass native to Africa. Both the extent of buffelgrass pastures within Mexico and the impacts of land conversion on biodiversity and ecosystem functioning. In the present study I address the effects of land conversion on the productivity and diversity of rangelands in the southern Sonoran Desert in the state of Sonora, Mexico. First, using satellite imagery from the Landsat mission, I found that rates of land conversion in the most heavily affected region of Sonora have continued to accelerate
Recommended publications
  • Deep Divergence and Rapid Evolutionary Rates in Gut-Associated Acetobacteraceae of Ants Bryan P
    Brown and Wernegreen BMC Microbiology (2016) 16:140 DOI 10.1186/s12866-016-0721-8 RESEARCH ARTICLE Open Access Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants Bryan P. Brown1,2 and Jennifer J. Wernegreen1,2* Abstract Background: Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. Results: We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content.
    [Show full text]
  • Evolution of Colony Characteristics in the Harvester Ant Genus
    Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution
    [Show full text]
  • Para Costa Rica Y Panamá
    Métodos en Ecología y Sistemática Vol. 10(1): 1 ISSN impreso 1659-2182 ISSN digital 1659-3049 Abril 2015 Taxonomía de Formicidae (Hymenoptera) para México. MIGUEL VÁSQUEZ-BOLAÑOS1. 1 Entomología, Centro de Estudios en Zoología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias. Camino Ing. Ramón Padilla Sánchez # 2100, C. P. 45220, Predio Las Agujas, Zapopan, Jalisco, México. [email protected] RESUMEN: Se presenta una lista actualizada de las especies de hormigas para México, considerando las recientes modificaciones y propuestas taxonómicas para la clasificación de Formicidae. PALABRAS CLAVE: Hormigas, Clasificación, Diversidad, México. ABSTRACT: An update list of ants species from Mexico are presented, considering recent taxonomic changes and taxonomical proposals for the clasification of Formicidae. KEY WORDS: Ants, Clasification, Diversity, Mexico. INTRODUCCIÓN en el grupo Prenolepis (LaPolla et al., 2010); otros se han dividido, Pachycondyla (Schmidt y Las hormigas son el grupo de insectos más Shattuck, 2014). exitoso en los ambientes terrestres, con una diversidad de casi 13,000 especies (Agosti y Para la familia Formicadae en México las Johnson, 2005). México es un país que se revisiones recientes para el género localiza entre las regiones Neotropical y Eurhopalothrix (Longino, 2013a), Neártica, lo que resulta en una compleja Leptanilloides (Borowiec & Longino, 2011), topografía y una gran diversidad biológica Leptogenys (Lattke, 2011), Megalomyrmex (Vásquez-Bolaños y Quiroz-Rocha, 2013); las (Boudinot et al., 2013), Nylanderia (Kallal y hormigas de México son un grupo poco LaPolla, 2012), Octostruma (Longino, 2013b), explorado, se reportan 884 especies (Vásquez- Odontomachus (MacGown et al., 2014), Bolaños, 2011) y posteriormente 973 especies Pachycondyla (Mackay y Mackay, 2010), (Ríos-Casanova, 2014).
    [Show full text]
  • Curriculum Vitae
    Stephen C. Pratt: Curriculum vitae STEPHEN C. PRATT Curriculum vitae 2 May 2019 School of Life Sciences Arizona State University P.O. Box 874501 Tempe AZ 85287-4501 E-mail: [email protected] Tel: (480) 727-9425 http://pratt.lab.asu.edu EDUCATION: 1997 Ph.D., Cornell University, Neurobiology and Behavior. 1988 B.A., Harvard University, Biology. APPOINTMENTS 2019–present Professor, School of Life Sciences, Arizona State University. 2012–2019 Associate Professor, School of Life Sciences, Arizona State University. 2006–2012 Assistant Professor, School of Life Sciences, Arizona State University. 2001–2006 Lecturer and Postdoctoral Scientist, Department of Ecology and Evolutionary Biology, Princeton University. 1998–2000 Postdoctoral Fellow, Department of Biology, University of Bath. 1997–1998 Postdoctoral Scientist, Whitehead Institute for Biomedical Research/MIT Center for Genome Research. RESEARCH FUNDING Current research support Dates Title Source Role Value 2018– BISECT: Biologically-inspired swarm DARPA PI of ASU $259,999 2020 perception and control technology Phase II section 2016– Emergent computation in collective NSF Co-I $595,520 2019 decision making by the crevice-dwelling rock ant Temnothorax rugatulus 2017– BioSwarm supplement: A methodology for DARPA PI of ASU $175,000 2018 modeling swarm behavioral dynamics from section local observations 2017– BioSwarm: Bio-inspired swarming DARPA PI of ASU $193,078 2018 section 1 Stephen C. Pratt: Curriculum vitae Completed research support Dates Title Source Role Value 2017 BISECT: Biologically-inspired
    [Show full text]
  • Variation in Arthropod Communities in Response to Urbanization: Seven Years of Arthropod Monitoring in a Desert City
    Variation in Arthropod Communities in Response to Urbanization: Seven Years of Arthropod Monitoring in a Desert City By: Christofer Bang, Stanley H. Faeth Bang, C. and Faeth, S.H. 2011. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape and Urban Planning 103(3-4): 383-399. Made available courtesy of Elsevier: http://dx.doi.org/10.1016/j.landurbplan.2011.08.013 ***© Elsevier. Reprinted with permission. No further reproduction is authorized without written permission from Elsevier. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** This is the author’s version of a work that was accepted for publication in Landscape and Urban Planning. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Landscape and Urban Planning, Volume 103, Issue 3-4, (2011) DOI: 10.1016/j.landurbplan.2011.08.013 Abstract: Continuous monitoring is essential to understand dynamics of biological communities in response to urbanization, and to provide guidance in landscape planning for conserving urban biodiversity. Arthropods serve this purpose because they are abundant and diverse in urban areas, and relatively easy to collect. Over seven years, in the Central Arizona Phoenix area, arthropod communities in three urban habitat categories were collected and compared to arthropods in natural desert using pitfall traps and non-parametric analyses.
    [Show full text]
  • SCI Insectsurveys Report.Fm
    Terrestrial Invertebrate Survey Report for San Clemente Island, California Final June 2011 Prepared for: Naval Base Coronado 3 Wright Avenue, Bldg. 3 San Diego, California 92135 Point of Contact: Ms. Melissa Booker, Wildlife Biologist Under Contract with: Naval Facilities Engineering Command, Southwest Coastal IPT 2739 McKean Street, Bldg. 291 San Diego, California 92101 Point of Contact: Ms. Michelle Cox, Natural Resource Specialist Under Contract No. N62473-06-D-2402/D.O. 0026 Prepared by: Tierra Data, Inc. 10110 W. Lilac Road Escondido, CA 92026 Points of Contact: Elizabeth M. Kellogg, President; Scott Snover, Biologist; James Lockman, Biologist COVER PHOTO: Halictid bee (Family Halictidae), photo by S. Snover. Naval Auxiliary Landing Field San Clemente Island June 2011 Final Table of Contents 1.0 Introduction . .1 1.1 Regional Setting ................................................................................................................... 1 1.2 Project Background .............................................................................................................. 1 1.2.1 Entomology of the Channel Islands .................................................................... 3 1.2.2 Feeding Behavior of Key Vertebrate Predators on San Clemente Island ............. 4 1.2.3 Climate ................................................................................................................. 4 1.2.4 Island Vegetation.................................................................................................. 5
    [Show full text]
  • View / Download 6.5 Mb
    Ecological and Evolutionary Factors Shaping Animal-Bacterial Symbioses: Insights from Insects & Gut Symbionts by Bryan Paul Brown Environment Duke University Date:_______________________ Approved: ___________________________ Jennifer Wernegreen, Supervisor ___________________________ Dana Hunt ___________________________ John Rawls ___________________________ Lawrence David Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of the Environment in the Graduate School of Duke University 2017 i v ABSTRACT Ecological and Evolutionary Factors Shaping Animal-Bacterial Symbioses: Insights from Insects & Gut Symbionts by Bryan Paul Brown Environment Duke University Date:_______________________ Approved: ___________________________ Jennifer Wernegreen, Supervisor ___________________________ Dana Hunt ___________________________ John Rawls ___________________________ Lawrence David An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of the Environment in the Graduate School of Duke University 2017 i v Copyright by Bryan Paul Brown 2017 Abstract Animal bacterial symbioses are pervasive and underlie the success of many groups. Here, I study ecological and evolutionary factors that shape interactions between a host and gut associates. In this dissertation, I interrogate interactions between the carpenter ant (Camponotus) and its associated gut microbiota to ask the following questions: What
    [Show full text]
  • Download PDF File
    Myrmecological News 20 Digital supplementary material Digital supplementary material to LANAN, M. 2014: Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). – Myrmecological News 20: 53-70. Tab. S1: Data and citations for information presented in Figure 3 and Figure S1. Note that no data in any column indi- cates a lack of reports in the literature. For instance, no data in the column for nesting strategy should not be interpreted as a positive report of strict monodomy, and ants may collect foods that have not been reported. Species Resource collected Foraging strategy Nesting strategy Acanthognathus rudis Small prey: collembola Solitary foraging (GRONENBERG & al. 1998) (GRONENBERG & al. 1998) Acromyrmex ambiguus Leaves (FOWLER 1985, Trunk trails, partially subterranean (FOWLER SAVERSCHEK & ROCES 2011) 1985) trails (SAVERSCHEK & ROCES 2011) Acromyrmex balzani Grass (LOPES & al. 2004) Recruitment, type = ? (LOPES & al. 2004) Polydomy (ICHINOSE Solitary foraging (PODEROSO & al. 2009) & al. 2006) Solitary foraging (FOWLER 1985) Acromyrmex coronatus Leaves (WETTERER 1995) Trunk trails (WETTERER 1995) Acromyrmex crassispinus Leaves (FOWLER 1985) Two to five trunk trails (FOWLER 1985) Acromyrmex disciger Leaves (FOWLER 1985) Trunk trails (FOWLER 1985) Acromyrmex fracticornis Grass (FOWLER & ROBINSON 1977) Solitary (FOWLER & ROBINSON 1977) Acromyrmex heyeri Grass (BOLLAZZI & ROCES 2011) Trunk trails (FOWLER 1985, BOLLAZZI & ROCES 2011) Acromyrmex hispidus fallax Leaves (FOWLER 1985) Trunk trails (FOWLER 1985) Acromyrmex laticeps Leaves (FOWLER 1985) Trunk trails (FOWLER 1985) Acromyrmex lobicornis Leaves (ELIZALDE & FARJI-BERNER Trunk trails (ELIZALDE & FARJI-BERNER 2012) 2012) Acromyrmex lundii Leaves (FOWLER 1988), mush- Trunk trails (FOWLER 1988) rooms (LECHNER & JOSENS 2012) Acromyrmex niger Leaves (SOUSA-SOUTO & al. 2005) Trunk trails (SOUSA-SOUTO & al.
    [Show full text]
  • Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
    BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Landscape and Urban Planning 103 (2011) 383–399 Contents lists available at SciVerse ScienceDirect Landscape and Urban Planning jou rnal homepage: www.elsevier.com/locate/landurbplan Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city a,∗ b Christofer Bang , Stanley H. Faeth a School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA b Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA a r t i c l e i n f o a b s t r a c t Article history: Continuous monitoring is essential to understand dynamics of biological communities in response to Received 27 April 2011 urbanization, and to provide guidance in landscape planning for conserving urban biodiversity. Arthro- Received in revised form 17 August 2011 pods serve this purpose because they are abundant and diverse in urban areas, and relatively easy to Accepted 24 August 2011 collect.
    [Show full text]
  • Crespi & Abbot
    Crespi & Abbot: Evolution of Kleptoparasitism 147 THE BEHAVIORAL ECOLOGY AND EVOLUTION OF KLEPTOPARASITISM IN AUSTRALIAN GALL THRIPS BERNARD CRESPI AND PATRICK ABBOT1 Behavioural Ecology Research Group, Department of Biological Sciences Simon Fraser University, Burnaby BC V5A 1S6 Canada 1Current address: Department of Ecology and Evolutionary Biology, University of Arizona ABSTRACT We used a combination of behavioral-ecological and molecular-phylogenetic data to analyze the origin and diversification of kleptoparasitic (gall-stealing) thrips in the genus Koptothrips, which comprises four described species that invade and breed in galls induced by species of Oncothrips and Kladothrips on Australian Acacia. The ge- nus Koptothrips is apparently monophyletic and not closely related to its hosts. Two of the species, K. dyskritus and K. flavicornis, each appears to represent a suite of closely-related sibling species or host races. Three of the four Koptothrips species are facultatively kleptoparasitic, in that females can breed within damaged, open galls by enclosing themselves within cellophane-like partitions. Facultative kleptoparasitism may have served as an evolutionary bridge to the obligately kleptoparasitic habit found in K. flavicornis. Evidence from phylogenetics, and Acacia host-plant relation- ships of the kleptoparasites and the gall-inducers, suggests that this parasite-host system has undergone some degree of cospeciation, such that speciations of Kopto- thrips have tracked the speciations of the gall-inducers. Quantification of kleptopar- asitism rates indicates that Koptothrips and other enemies represent extremely strong selective pressures on most species of gall-inducers. Although the defensive soldier morphs found in some gall-inducing species can successfully defend against Koptothrips invasion, species with soldiers are still subject to high rates of successful kleptoparasite attack.
    [Show full text]
  • Dissertation Combined-Review Edits
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Effects of Pharmaceuticals in Reclaimed Water on Insects in Different Feeding Guilds Permalink https://escholarship.org/uc/item/2bn1v36b Author Pennington, Marcus John Publication Date 2017 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Effects of Pharmaceuticals in Reclaimed Water on Insects in Different Feeding Guilds A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Toxicology by Marcus John Pennington September 2017 Dissertation Committee: Dr. John Trumble, Chairperson Dr. Jay Gan Dr. Quinn McFrederick Copyright by Marcus John Pennington 2017 The Dissertation of Marcus John Pennington is approved: _____________________________________________________ _____________________________________________________ _____________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements To my major professor, Dr. John Trumble, from the bottom of my heart thank you. None of this would have been possible without your guidance and tutelage. I know it could not have been easy to willingly accept the challenge of taking a non-entomologist but again I thank you for this wonderful opportunity to have pursued this degree under your supervision. I would also like to thank Dr. Jay Gan and Dr. Quinn McFrederick for welcoming me into their labs and for always allowing a quick drop in. Those quick moments in your doorways were some of the most helpful during this process. A very special thank you goes to the entire Trumble Lab for their help in rearing insects, collecting, counting when I could not, reviews of manuscripts, and trouble-shooting research snafus.
    [Show full text]