Supplemental Figure Legends

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Figure Legends Supplemental Figure Legends Supplemental Figure 1. Expression of cytoplasmic immunoglobulin in D4 cell subsets. A. Phenotype of D4 cell subsets. B. Expression of cyIgM, cyIgA, and cyIgG in D4 cell subsets. Results are those of one experiment representative of three, SI means Staining Index. C. Expression of cyIgM, cyIgA, and cyIgG in D4 cell subsets. Results are mean SI obtained in three separate experiments. * The mean expression is significantly different from that in CD20high B cells. ** The mean expression is significantly different from that in D4 CD20low prePBs. Supplemental Figure 2. Expression of genes coding for B or PC markers. Data are the Affymetrix signals of expression of genes coding for B or PC markers in MBCs, CD20high B cells, CD20low prePBs, CD20- prePBs, PBs, early PCs, and BMPCs using the same color code as in Figure 6A. Data are the mean value ± SD of gene expression determined in 5 separate experiments. * The mean expression is significantly different from that in CD20high B cells. ** The mean expression is significantly different from that in D4 CD20low prePBs. Supplemental Figure 3. Expression of genes coding for homing molecules. Data are the Affymetrix signals of expression of genes coding for remarkable chemokine receptors or integrins in MBCs, CD20high B cells, CD20low prePBs, CD20- prePBs, PBs, early PCs, and BMPCs using the same color code as in Figure 6A. Data are the mean value ± SD of gene expression determined in 5 separate experiments. * The mean expression is significantly different from that in CD20high B cells. ** The mean expression is significantly different from that in D4 CD20low prePBs. A B cyIgM SI=31SI=83 SI=110 SI=215 CD20- CD38+ CD38 Anti-IgM-FITC CD20- CD20low CD20high cyIgA SI=37SI=111 SI=147 SI=167 CD38- CD38- CD38- CD20 Anti-IgA-FITC cyIgG SI=15SI=30 SI=37 SI=59 Anti-IgG-APC CD20high CD20low CD20- CD20- CD38- CD38- CD38- CD38+ C 300 300 * 70 ** *** * *** 60 250 *** 250 *** * * 50 200 200 * * 40 ** 150 * 150 30 * 100 100 20 cyIgG SI cyIgG cyIgA SI cyIgA cyIgM SI cyIgM 50 50 10 0 0 0 CD20high CD20low CD20- CD20- CD38- CD38- CD38- CD38+ Supplemental Figure 1 2000 2000 900 900 TNFRSF8=CD30 7000 EMP1 CD19 CD20 800 CD22 800 CD24 700 * 6000 * ** 1500 700 700 600 1500 ** 5000 600 600 500 4000 500 500 * 1000 1000 400 * 400 400 3000 * 300 ** 300 * 300 500 2000 200 500 200 200 100 100 1000 * * 100 * * 0 0 0 0 0 ** ** 0 ** 600 3000 500 3500 CD40 AICDA CIITA HLA-DMB 7000 1000 MPEG1 500 2500 3000 CD83 400 6000 800 2500 400 2000 5000 300 2000 600 300 1500 * 4000 200 1500 3000 400 200 1000 * 1000 2000 100 * 500 100 200 ** * 500 * * 1000 0 0 ** 0 * 0 * 0 * * * ** 0 *** ** 800 IL4R 500 TNF LTB CD27 CD38 1500 CD31 4000 2000 600 400 3000 2500 3000 1500 1000 300 400 2000 2000 200 1000 1500 * 500 200 * 1000 * 100 * * 1000 500 * ** ** * * ** 500 0 0 0 ** 0 0 0 TNFRSF17 CD59 700 IL6R * 4000 =BCMA * 600 ** 1600 ** 500 3000 1400 1200 * 400 1000 2000 * 300 *** 800 * 600 200 1000 400 100 200 0 0 0 s s s s s s s l B B B C C C P P P B cel eP eP M B r r ly M gh p - p B i ow h l 20 ear 20 20 D D D C C C Supplemental Figure 2 2000 800 CCR1 1000 CCR6 CCR10 S1PR1=EDG1 1500 800 600 750 * 600 1000 ** 400 * * 500 400 250 200 * * * * 500 200 ** 0 0 0 0 600 2000 CCR7 CXCR5 ITGA4 * CD69 500 500 ** 5000 1500 4000 400 400 3000 300 1000 300 * 2000 200 * 200 * 500 ** 1000 100 100 * * * * 0 ** 0 0 ** 0 150 1000 ITGAX ITGB2 ITGB1 * 4000 KLF2 800 800 ** 100 3000 600 600 2000 400 400 50 * * 1000 ** * 200 200 * 0 0 ** 0 0 s s s s s s s C l B B B C C B cel P P P P P re re y M M B p p l B igh - h low ear 20 20 20 D D D C C C Supplemental Figure 3 Supplemental Table I. CD20-CD38- and CD20highCD38-. Gene list. CD20-CD38- genes CD20highCD38- genes Fold Fold Gene ID Gene Name Change Score(d) Gene ID Gene Name Change Score(d) 205945_at IL6R 18,41 4,44 232739_at SPIB 0,01 -2,68 235275_at BMP8B 15,78 3,16 224402_s_at FCRL4 0,01 -5,48 203914_x_at HPGD 14,66 2,65 226818_at MPEG1 0,01 -2,91 204798_at MYB 10,80 7,09 235385_at MARCH-I 0,01 -3,98 222392_x_at PERP 9,68 3,86 223343_at MS4A7 0,01 -4,75 203373_at SOCS2 9,35 5,81 204959_at MNDA 0,01 -4,11 221790_s_at LDLRAP1 8,87 3,35 266_s_at CD24 0,01 -4,43 201324_at EMP1 8,67 3,79 204249_s_at LMO2 0,01 -14,17 206641_at TNFRSF17 6,86 5,37 219517_at ELL3 0,01 -8,97 201243_s_at ATP1B1 6,67 2,67 228055_at NAPSB 0,02 -9,02 233500_x_at CLEC2D 6,45 3,15 217418_x_at MS4A1 0,02 -14,56 201678_s_at DC12 6,22 3,95 205987_at CD1C 0,03 -7,57 39248_at AQP3 6,08 9,19 231093_at FCRH3 0,03 -5,07 200983_x_at CD59 5,32 2,49 228153_at IBRDC2 0,03 -2,97 206729_at TNFRSF8 5,25 2,61 207339_s_at LTB 0,04 -4,80 204254_s_at VDR 5,20 3,22 208018_s_at HCK 0,05 -5,33 221760_at MAN1A1 5,04 12,00 208820_at PTK2 0,05 -2,79 220306_at FAM46C 5,01 3,56 210279_at GPR18 0,05 -5,82 209457_at DUSP5 4,90 3,08 238009_at SOX5 0,06 -5,17 205885_s_at ITGA4 4,73 2,58 213293_s_at TRIM22 0,06 -7,82 203397_s_at GALNT3 4,61 4,02 219014_at PLAC8 0,06 -4,11 206632_s_at APOBEC3B 4,61 4,79 228617_at BIRC4BP 0,06 -2,80 217127_at CTH 4,59 5,13 206126_at BLR1 0,07 -4,05 CD22 /// 1554242_a_at COCH 4,59 3,11 204581_at MAG 0,07 -4,39 202241_at TRIB1 4,58 9,99 216080_s_at FADS3 0,07 -3,79 224802_at NDFIP2 4,52 2,81 221234_s_at BACH2 0,07 -4,31 209921_at SLC7A11 4,52 3,40 213111_at PIP5K3 0,07 -11,02 201397_at PHGDH 4,52 2,93 225123_at SESN3 0,08 -4,27 203474_at IQGAP2 4,44 5,23 215933_s_at HHEX 0,08 -5,42 200951_s_at CCND2 4,13 8,53 205128_x_at PTGS1 0,08 -2,75 GALNAC4S- 203066_at 6ST 4,09 3,15 218032_at SNN 0,09 -2,97 218018_at PDXK 4,08 2,66 205922_at VNN2 0,09 -2,89 219118_at FKBP11 4,03 2,99 204440_at CD83 0,09 -7,96 204900_x_at SAP30 3,97 4,52 203186_s_at S100A4 0,09 -3,34 202558_s_at STCH 3,97 4,01 221011_s_at LBH 0,10 -4,42 224851_at CDK6 3,96 3,14 204994_at MX2 0,10 -3,19 211464_x_at CASP6 3,92 2,59 206983_at CCR6 0,10 -4,88 200628_s_at WARS 3,87 4,70 200696_s_at GSN 0,10 -2,79 217824_at UBE2J1 3,85 5,86 219836_at ZBED2 0,10 -7,02 225512_at ZBTB38 3,78 7,76 1559263_s_at ZC3H12D 0,10 -6,97 202468_s_at CTNNAL1 3,67 3,44 227458_at PDCD1LG1 0,10 -5,18 218073_s_at TMEM48 3,60 3,70 38521_at MAG 0,10 -7,58 228964_at PRDM1 3,57 4,17 230110_at MCOLN2 0,11 -5,00 209695_at PTP4A3 3,55 3,79 223751_x_at TLR10 0,11 -5,58 203971_at SLC31A1 3,53 3,51 229937_x_at LILRB1 0,11 -4,08 216044_x_at FAM69A 3,50 3,58 226748_at LYSMD2 0,11 -3,05 225520_at MTHFD1L 3,49 9,94 203233_at IL4R 0,11 -3,57 222385_x_at SEC61A1 3,47 2,86 224499_s_at AICDA 0,12 -5,11 201206_s_at RRBP1 3,44 3,22 215127_s_at RBMS1 0,12 -3,48 226771_at ATP8B2 3,41 4,57 1552807_a_at SIGLEC10 0,12 -2,99 SLC16A6 /// 230748_at LOC440459 3,41 3,29 215346_at CD40 0,12 -2,70 211430_s_at IGH 3,41 10,17 201315_x_at IFITM2 0,13 -4,05 205047_s_at ASNS 3,35 7,15 203932_at HLA-DMB 0,13 -7,09 242939_at TFDP1 3,35 3,64 210164_at GZMB 0,13 -2,91 201349_at SLC9A3R1 3,30 4,84 205306_x_at KMO 0,13 -4,92 201200_at CREG1 3,21 3,02 212203_x_at IFITM3 0,13 -2,78 222412_s_at SSR3 3,20 3,57 222891_s_at BCL11A 0,14 -5,39 222532_at SRPRB 3,18 2,42 224406_s_at FCRL5 0,14 -5,22 225368_at HIPK2 3,18 9,16 235401_s_at FCRLM1 0,14 -7,68 200924_s_at SLC3A2 3,18 2,81 221044_s_at TRIM34 0,14 -3,07 201565_s_at ID2 3,17 2,71 227646_at EBF 0,14 -6,06 237625_s_at IGKC 3,16 2,42 202464_s_at PFKFB3 0,14 -7,13 SUB1 /// 221727_at SUB1P1 3,15 5,95 209828_s_at IL16 0,15 -2,71 201160_s_at CSDA 3,12 3,52 218076_s_at ARHGAP17 0,15 -2,68 204142_at ENOSF1 3,11 5,55 205671_s_at HLA-DOB 0,16 -3,29 216449_x_at TRA1 3,10 6,60 223287_s_at FOXP1 0,16 -3,63 201021_s_at DSTN 3,09 3,50 201850_at CAPG 0,16 -3,71 1553530_a_at ITGB1 3,07 2,53 227697_at SOCS3 0,16 -4,16 230352_at PRPS2 3,06 4,92 215565_at DTNB 0,16 -5,78 222231_s_at PRO1855 3,06 11,04 205098_at CCR1 0,17 -4,47 203967_at CDC6 3,05 2,49 224374_s_at EMILIN2 0,17 -2,97 223062_s_at PSAT1 3,03 7,55 204352_at TRAF5 0,17 -5,83 214512_s_at SUB1 2,97 3,20 204446_s_at ALOX5 0,17 -7,65 221253_s_at TXNDC5 2,95 7,06 211962_s_at ZFP36L1 0,17 -7,14 218681_s_at SDF2L1 2,92 2,94 210538_s_at BIRC3 0,17 -6,09 201923_at PRDX4 2,91 4,79 228343_at POU2F2 0,18 -4,02 212110_at SLC39A14 2,91 4,18 222450_at TMEPAI 0,18 -3,68 204695_at CDC25A 2,90 3,40 230252_at GPR92 0,19 -3,66 226982_at ELL2 2,89 5,43 205859_at LY86 0,19 -3,46 224679_at MESDC2 2,88 3,22 232543_x_at ARHGAP9 0,19 -8,11 212501_at CEBPB 2,88 4,02 203281_s_at UBE1L 0,19 -3,53 200895_s_at FKBP4 2,85 3,49 202748_at GBP2 0,20 -3,48 203968_s_at CDC6 2,85 3,93 214022_s_at IFITM1 0,20 -3,21 226750_at LARP2 2,83 3,64 203271_s_at UNC119 0,20 -2,70 201468_s_at NQO1 2,83 2,60 204057_at IRF8 0,20 -6,78 219869_s_at SLC39A8 2,83 2,40 212827_at IGHM 0,20 -11,66 209340_at UAP1 2,83 4,22 212774_at ZNF238 0,21 -7,99 1553954_at ALG14 2,80 3,11 225570_at SLC41A1 0,21 -4,53 202375_at SEC24D 2,77 2,55 223162_s_at LCHN 0,22 -3,31 200617_at KIAA0152 2,76 3,56 238429_at TMEM71 0,22 -4,36 200889_s_at SSR1 2,75 5,39 213572_s_at SERPINB1 0,22 -3,58 204502_at SAMHD1 2,75 3,02 225775_at TSPAN33 0,22 -4,41 204639_at ADA 2,74 2,56 202732_at PKIG 0,23 -3,63 202721_s_at GFPT1 2,73 2,57 228234_at TICAM2 0,23 -5,28 213440_at RAB1A 2,73 2,48 218312_s_at ZNF447 0,23 -2,99 204033_at TRIP13 2,70 6,36 209558_s_at HIP1R 0,23 -4,00 200755_s_at CALU 2,69 2,63 200644_at MARCKSL1 0,23 -2,94 213836_s_at WIPI49 2,69 4,74 207777_s_at SP140 0,23 -9,22 223209_s_at SELS 2,67 4,59 204882_at ARHGAP25 0,23 -4,91 219110_at NOLA1 2,65 4,14 229597_s_at WDFY4 0,23 -3,91 223513_at CENPJ 2,65 2,61 242239_at NSUN6 0,23 -2,80 203200_s_at MTRR 2,65 3,26 209795_at CD69 0,23 -5,02 219806_s_at FN5 2,64 2,47 217763_s_at RAB31 0,23 -3,51 226150_at HTPAP 2,64 4,05 226878_at HLA-DOA 0,24 -4,25 223325_at TXNDC11 2,61 3,56
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Machine-Learning and Chemicogenomics Approach Defi Nes and Predicts Cross-Talk of Hippo and MAPK Pathways
    Published OnlineFirst November 18, 2020; DOI: 10.1158/2159-8290.CD-20-0706 RESEARCH ARTICLE Machine -Learning and Chemicogenomics Approach Defi nes and Predicts Cross-Talk of Hippo and MAPK Pathways Trang H. Pham 1 , Thijs J. Hagenbeek 1 , Ho-June Lee 1 , Jason Li 2 , Christopher M. Rose 3 , Eva Lin 1 , Mamie Yu 1 , Scott E. Martin1 , Robert Piskol 2 , Jennifer A. Lacap 4 , Deepak Sampath 4 , Victoria C. Pham 3 , Zora Modrusan 5 , Jennie R. Lill3 , Christiaan Klijn 2 , Shiva Malek 1 , Matthew T. Chang 2 , and Anwesha Dey 1 ABSTRACT Hippo pathway dysregulation occurs in multiple cancers through genetic and non- genetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defi ning tumors that are Hippo pathway–dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type–agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage- independent signature for the Hippo pathway in cancers.
    [Show full text]
  • Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer
    UCLA UCLA Previously Published Works Title Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer. Permalink https://escholarship.org/uc/item/1vj106ww Journal PloS one, 11(2) ISSN 1932-6203 Authors Yang, Ying-Hua Buhamrah, Asma Schneider, Abraham et al. Publication Date 2016 DOI 10.1371/journal.pone.0150151 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer Ying-Hua Yang1, Asma Buhamrah1, Abraham Schneider1,2, Yi-Ling Lin3, Hua Zhou1, Amr Bugshan1, John R. Basile1,2* 1 Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America, 2 Greenebaum Cancer Center, Baltimore, Maryland, United States of America, 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America * [email protected] Abstract Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guid- ance, are now known to play a role in this process as well. Emerging data have identified OPEN ACCESS Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of Citation: Yang Y-H, Buhamrah A, Schneider A, Lin Y- resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we L, Zhou H, Bugshan A, et al. (2016) Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.
    [Show full text]
  • An Extracellular Site on Tetraspanin CD151 Determines Α3 and Α6
    JCBArticle An extracellular site on tetraspanin CD151 determines ␣3 and ␣6 integrin–dependent cellular morphology Alexander R. Kazarov, Xiuwei Yang, Christopher S. Stipp, Bantoo Sehgal, and Martin E. Hemler Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115 he ␣3␤1 integrin shows strong, stoichiometric, direct Brij 96–resistant) were independent of the QRD/TS151r lateral association with the tetraspanin CD151. As site, occurred late in biosynthesis, and involved mature T shown here, an extracellular CD151 site (QRD194–196) integrin subunits. Presence of the CD151–QRD194–196→INF is required for strong (i.e., Triton X-100–resistant) ␣3␤1 mutant disrupted ␣3 and ␣6 integrin–dependent formation association and for maintenance of a key CD151 epitope of a network of cellular cables by Cos7 or NIH3T3 cells on (defined by monoclonal antibody TS151r) that is blocked basement membrane Matrigel and markedly altered cell upon ␣3 integrin association. Strong CD151 association spreading. These results provide definitive evidence that with integrin ␣6␤1 also required the QRD194–196 site and strong lateral CD151–integrin association is functionally masked the TS151r epitope. For both ␣3 and ␣6 integrins, important, identify CD151 as a key player during ␣3 and strong QRD/TS151r-dependent CD151 association occurred ␣6 integrin–dependent matrix remodeling and cell spreading, early in biosynthesis and involved ␣ subunit precursor and support a model of CD151 as a transmembrane linker forms. In contrast, weaker associations of CD151 with itself, between extracellular integrin domains and intracellular integrins, or other tetraspanins (Triton X-100–sensitive but cytoskeleton/signaling molecules.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Retinoid X Receptor Suppresses a Metastasis-Promoting Transcriptional Program in Myeloid Cells Via a Ligand-Insensitive Mechanism
    Retinoid X receptor suppresses a metastasis-promoting transcriptional program in myeloid cells via a ligand-insensitive mechanism Mate Kissa, Zsolt Czimmerera,b, Gergely Nagyb, Pawel Bieniasz-Krzywiecc,d, Manuel Ehlingc,d, Attila Papa, Szilard Poliskaa,e, Pal Botof, Petros Tzerpose, Attila Horvatha, Zsuzsanna Kolostyaka, Bence Danielg, Istvan Szatmarif, Massimiliano Mazzonec,d, and Laszlo Nagya,b,g,1 aNuclear Receptor Research Laboratory, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary; bMTA-DE “Lendület” Immunogenomics Research Group, University of Debrecen, 4032 Debrecen, Hungary; cLaboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; dLaboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; eUD-GenoMed Ltd., 4032 Debrecen, Hungary; fStem Cell Differentiation Laboratory, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary; and gGenomic Control of Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827 Edited by Bert W. O’Malley, Baylor College of Medicine, Houston, TX, and approved August 18, 2017 (received for review January 18, 2017) Retinoid X receptor (RXR) regulates several key functions in myeloid and identified a network of RXR-bound enhancers that control cells, including inflammatory responses, phagocytosis, chemokine angiogenic genes including Vegfa, Hbegf, Litaf,andHipk2 (9). secretion, and proangiogenic activity. Its importance, however, in Activation of these enhancers by RXR induced a proangiogenic tumor-associated myeloid cells is unknown. In this study, we transcriptional program and phenotype (9). Interestingly, we demonstrate that deletion of RXR in myeloid cells enhances lung found that half of the 5,200 RXR-occupied genomic sites were metastasis formation while not affecting primary tumor growth.
    [Show full text]
  • Oestrogen Receptor α AF-1 and AF-2 Domains Have Cell
    ARTICLE DOI: 10.1038/s41467-018-07175-0 OPEN Oestrogen receptor α AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium Stéphanie Cagnet1, Dalya Ataca 1, George Sflomos1, Patrick Aouad1, Sonia Schuepbach-Mallepell2, Henry Hugues3, Andrée Krust4, Ayyakkannu Ayyanan1, Valentina Scabia1 & Cathrin Brisken 1 α α 1234567890():,; Oestrogen receptor (ER ) is a transcription factor with ligand-independent and ligand- dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expres- sion of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity. 1 Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2 Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland. 3 Centre Hospitalier Universitaire Vaudois, Department of Laboratory Medecine, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland.
    [Show full text]
  • Page 1 Supplemental Table I Upin WTVG Upin Humlowfb FAR1
    Supplemental Table I UPinWTvG UPinHuMlowFB overlap FAR1 CD209 PLEKHO2 B2M IL27 GCLC CALR HMGN2P46 ME1 XPO1 CLEC1A NEK6 PDIA3 HSD17B14 TMEM106A SERPINH1 NSUN7 KCNJ15 PLEKHO2 SEMA6B SH3PXD2B HSPD1 BAALC RHOU SYVN1 CEACAM4 TGFBI DNAJB9 KATNAL2 CTSZ SLC25A19 CCDC175 SULF2 MHCII CARD14 P2RY6 MDN1 TDO2 CD74 GCLC FCAR HLA-DQB1 PTPN2 GLDN CD14 CHORDC1 MMP7 CSF2RB LOX CLEC5A MRC1 STIP1 ZMYND15 ITGAX BPIFB1 ITLN1 SLAMF7 ME1 DKK2 CD84 PDIA6 FAM124A FCGR2A HYOU1 F3 CLEC10A NLRC5 DZIP1L IFI30 NEK6 CECR6 CLEC4A SLC39A14 NDP CLEC7A TMEM106AFCGR1A TFEC KCNJ15 CCL7 C1QC SH3PXD2B CRABP2 C1QA RHOU PIPOX FOLR2 LRP2 CCL2 CH25H MVD VSIG4 C1QB TGFBI LINC01010 SIGLEC1 NFKB2 DPRXP4 CTSS C5 FAM20A CCR1 HSP90B1 ANKRD29 SLAMF8 ALDH18A1 OCSTAMP MS4A7 EDEM1 TGM2 HK3 CTSZ TM4SF19 CXCL10 C6 TRPV4 CTSK AACS CCL8 MSR1 PPA1 CCL1 STEAP4 PIK3R5 KCNE1 CXCL9 RASAL3 SLC9A7P1 MS4A6A DOCK11 CHI3L1 TIMP1 BHLHE40 LOC731424 CD209 HCLS1 DCSTAMP CCL7 FASN MSR1 PDCD1LG2 PDIA4 IL31RA CCL2 ITK CXCL3 CXCL2 CRELD2 TREM2 C15orf48 SFTPD MGST1 GPR84 BCL3 METTL7B CXCL5 SULF2 TMEM86A OCSTAMP CYP51A1 A2M SERPINA1 CREB3L1 AQP9 MMP12 DUSP2 NUPR1 CCL8 ADAM8 FHAD1 CCL24 P2RY6 YPEL4 FBP1 KCNAB2 FBP1 NA NFKBIE LOC100506585 NA FSCN1 CXCL16 NA MANF RAB13 NA SLC5A3 LOC391322 NA CTSC IL8 NA COTL1 MS4A4A NA HSPA5 SERPING1 NA MUC5B PLA2G4C NA CD74 CA12 NA HLA-DQB1 GBP1P1 NA SLC7A2 C11orf45 NA FABP5 ACVRL1 NA CIITA SPP1 NA RAB3IL1 TLN2 NA HSPE1 NDRG2 NA SCD C15orf48 NA ITIH4 KCNJ15 NA SERPINA3 MEIS3P1 NA LAG3 IL1RN NA FOXM1 HNMT NA CD14 CYP27B1 NA RRM2 CDCP1 NA ABCD2 FOLR2 NA FCRL2 ECM1 NA PDE3B ADAMDEC1
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-TSPAN3
    Anti-TSPAN3 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-TSPAN3 Product Number HPA015996 Gene Description tetraspanin 3 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: NGTNPDAASRAIDYVQRQLHCCGIHNYSDWENTDWFKETKNQSVPLSCCR ETASNCNGSLAHPSDLYAEGCEALVVKKLQEI Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:20 - 1:50 - Retrieval method: HIER pH6 ICC-IF (Immunofluorescence) - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA015996 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Complexes of Tetraspanins with Integrins: More Than Meets the Eye
    COMMENTARY 4143 Complexes of tetraspanins with integrins: more than meets the eye Fedor Berditchevski CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, B15 2TA, UK Author for correspondence (e-mail: [email protected]) Journal of Cell Science 114, 4143-4151 (2001) © The Company of Biologists Ltd Summary The transmembrane proteins of the tetraspanin membrane, integrin-tetraspanin signalling complexes superfamily are implicated in a diverse range of biological are partitioned into specific microdomains proximal to phenomena, including cell motility, metastasis, cell cholesterol-rich lipid rafts. A substantial fraction of proliferation and differentiation. The tetraspanins are tetraspanins colocalise with integrins in various associated with adhesion receptors of the integrin family intracellular vesicular compartments. It is proposed that and regulate integrin-dependent cell migration. In cells tetraspanins can influence cell migration by one of the attached to the extracellular matrix, the integrin- following mechanisms: (1) modulation of integrin tetraspanin adhesion complexes are clustered into a distinct signalling; (2) compartmentalisation of integrins on the cell type of adhesion structure at the cell periphery. Various surface; or (3) direction of intracellular trafficking and tetraspanins are associated with phosphatidylinositol 4- recycling of integrins. kinase and protein kinase C isoforms, and they may facilitate assembly of signalling complexes by tethering these enzymes to integrin heterodimers. At the plasma Key words: Tetraspanin, Integrin, Migration, Signalling Introduction relatively well conserved among tetraspanins (Fig. 1). A Tetraspanins (also referred to as tetraspans or TM4SF proteins) combination of all the above features distinguishes tetraspanins are a family of widely expressed four-transmembrane-domain from a diverse group of proteins that have four transmembrane proteins.
    [Show full text]
  • Downloaded 18 July 2014 with a 1% False Discovery Rate (FDR)
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer Permalink https://escholarship.org/uc/item/0t47b9ws Author Spiciarich, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Professor Matthew B. Francis Professor Amy E. Herr Fall 2017 Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer © 2017 by David Spiciarich Abstract Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Changes in glycosylation have long been appreciated to be part of the cancer phenotype; sialylated glycans are found at elevated levels on many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to cell surface sialylation are not well characterized, specifically in bona fide human cancer. Metabolic and bioorthogonal labeling methods have previously enabled enrichment and identification of sialoglycoproteins from cultured cells and model organisms. The goal of this work was to develop technologies that can be used for detecting changes in glycoproteins in clinical models of human cancer.
    [Show full text]