ABSTRACT BAYASGALAN, GANTULGA. Late Cenozoic Landscape Evolution in the Khangay Mountains, Mongolia

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT BAYASGALAN, GANTULGA. Late Cenozoic Landscape Evolution in the Khangay Mountains, Mongolia ABSTRACT BAYASGALAN, GANTULGA. Late Cenozoic Landscape Evolution in the Khangay Mountains, Mongolia. (Under the direction of Dr. Karl W. Wegmann). Timing, rates, and systems responsible for uplift of intracontinental mountain ranges provide insight into the creation of high-elevation regions on Earth that are distant from active plate tectonic margins. The Khangay Mountains in central Mongolia is an intriguing research site that is suitable for investigating the timing of geologic processes responsible for topographic uplift and the development of continental scale drainage patterns, as well as the climatic-geomorphic responses to such. This dissertation focuses on defining shallow crustal and surficial processes contributing to the development of the Khangay Mountains at both short and long topographic wavelengths, as well as the topographic evolution of the range. The first chapter of this dissertation focuses on cross-strike drainage development via the formation and capture of small tectonic basins (lakes) in front of an active thrust known as the Bayankhongor fault along the southern flank of the Khangay Mountains. The field research site contains ample geomorphological features that I will use to reconstruct the interplay between surface uplift by faulting, temporary formation of lakes in footwall basins and fluvial incision. Although ultimately these landforms (e.g. water gaps) reflect the defeat of rivers during sustained rock uplift, the role of climate oscillations in their formation is an underexplored topic. I used a coupled tectonics–landscape evolution-climate change model to test the hypothesis that a ~130 km2 late Quaternary lake in the Galuut Valley along the southern flank of the Khangay Mountains drained, perhaps catastrophically. I hypothesize that fault-controlled uplift of the original outlet exceeded the elevation of a low drainage divide between an adjacent range-front basin, possibly during a climatically-forced low stand in lake level. The research of my second chapter focuses upon characterizing the relative importance of chemical and physical weathering to landscape development in the Khangay Mountains through an investigation of geochemical major and minor trace elemental analysis. The samples are collected along major stream valleys in the Khangay from well-developed saprolitic paleosols formed in metasediments (middle Orkhon), granite (upper Orkhon), and Miocene fluvial deposits (upper Chuluut) preserved beneath 40Ar/39Ar dated basaltic lava flows with ages of 11.2, 7.6 and 3.1 Ma, respectively. I used the Chemical Index of alteration (CIA), Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW) derived from the fine-sediment fraction of these paleosols to reconstruct estimates of integrated paleo-mean annual temperature and precipitation in the millennia preceding lava burial. I used these data to compare estimates of geomorphic processes from the end of the middle Miocene and Pliocene with the cold-region, continental climate and physical weathering-dominant geomorphic processes that exist across the Khangay Mountains during the Quaternary. The third chapter focuses on quantifying valley sedimentary fill (alluvium) thicknesses in the Khangay Mountains. My hypothesis is that a regional change from relatively stable, warmer and more humid Miocene and Pliocene climate to the oscillatory cold and dry-dominated climate of the Quaternary resulted in substantial geomorphic process change. Specifically, regional hillslopes transitioned from transport-limited to weathering-limited, which resulted in substantial valley aggradation. The presence of thick packages of aggraded clastic fluvial sediment in both glaciated and non-glaciated valleys of the Khangay Mountains is an indication that glaciers alone are not responsible for the backfilling of regional valleys with sediment. I employed GIS analyses to estimate the thickness (depth to bedrock) and volume of aggraded Quaternary sediments from both Pleistocene glaciated and non-glaciated drainages. Estimates of these parameters provided constraints for reconstructing landscape-scale erosion rates and the modeling of isostatic uplift of the Khangay Mountain due to erosional unloading. © Copyright 2018 Gantulga Bayasgalan All Rights Reserved Late Cenozoic landscape evolution in the Khangay Mountains, Mongolia by Gantulga Bayasgalan A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Marine, Earth, and Atmospheric Sciences Raleigh, North Carolina 2018 APPROVED BY: ________________________________ ________________________________ Karl W. Wegmann Elana L. Leithold Committee Chair ________________________________ ________________________________ Helena Mitasova Ethan Hyland DEDICATION To my parents, L. Bayasgalan and L. Enkhtuya. ii BIOGRAPHY Gantulga Bayasgalan was born in Undurkhaan, Mongolia, and raised in Ulaanbaatar, Mongolia. He earned a Bachelor of Science degree in environmental science from National University of Mongolia in 2002 and a Master of Science degree in Physical Land Resources from the Free University of Brussels in 2007. He spent 5 years working as a lecturer in the Department of geology, Mongolian University of Science and Technology before enrolling in the PhD program at NC State in 2013. iii ACKNOWLEDGEMENTS This work was completed with the help of many people to whom I owe a great debt. My first and foremost thanks go to Prof. Karl W. Wegmann for his support and valued advice throughout my graduate study and for giving me a great opportunity to work and study at North Carolina State University. His guidance and editing in order to make this thesis readable is especially appreciated. I would like to thank the members of my graduate committee Dr. Lonnie Leithold, Dr. Helena Mitasova and Dr. Ethan Hyland. This dissertation has been significantly improved as a result of their valuable guidance and suggestions. I am also grateful to Dr. A. Bayasgalan for his suggestions and support during my Ph.D. program at NCSU. A huge debt of gratitude is owed to Dr. Emanuele Giachetta at the ETH-Zurich for his guidance and help for manipulating SIGNUM landscape evolution model, which intensively used for chapter 1. I would also like to thank Dr. R. Fodor at the NCSU, for his advice for calculating Major Element analysis for chapter 2, Dr. E. Hestir and Dr. D. Bohnenstiehl for their help and encouragement of my research and valuable discussions. Doing research with this effective working group was a great help in finishing my Ph.D. program. I am also indebted to Dr. Kh. Tseedulam, at the Mongolian University of Science and Technology for her help in performing geophysical Vertical Electric Sounding field survey for my research chapter 1. I also would like to thank the professors of the Marine Earth and Atmospheric Science Department at NCSU for their enlightening lectures, especially Jim Hibbard and Gary Lackmann. I immensely thank to Mrs. Meredith Henry, Mrs. Laura Holland and Mrs. Beth Graf for their professional administrative assistance. For the fieldwork in Mongolia, I would like to thank Narangerel Mandakh for his excellent driving and navigation skills throughout the countryside of Mongolia, and Steve Smith, Nathan Lyons, and Matthew Morriss for their great companionship and support both in lab and in the field. Many warm and happy memories accumulated related to my friends. I thank to all of my friends for their longtime friendship. Mongolia research was supported by National Science Foundation Research Grants EAR-1009702 and EAR-1009680. My deepest gratitude goes to my family for their unflagging love and support throughout my life. Without their help and encouragement from them, this thesis would not have been completed. iv TABLE OF CONTENTS LIST OF TABLES………………………………….……………………….……….…..…… viii LIST OF FIGURES……………………….………………………………....…...………….... xii APPENDICES………….………………………………………..…….………….................. xviii Chapter 1: Paleoenvironmental Reconstruction of Late Quaternary Lacustrine Sediments and their Tectonic Implications, Southern Khangay Mountains, Mongolia 1.1. Abstract.................................................................................................................................. 1 1.2. Introduction ........................................................................................................................... 2 1 1.3. Background ............................................................................................................................ 5 1.4. Materials and Methods ..........................................................................................................2 9 1.4.1. SIGNUM modeling .....................................................................................................5 11 1.4.2. Stratigraphy and radiocarbon ages...............................................................................9 12 1.4.3. Geophysical investigation ........................................................................................... 13 11 1.4.3.1. Vertical Electric Sounding (VES) method .......................................................... 13 1.4.3.2. Ground penetrating radar (GPR) survey ............................................................... 14 1.4.4. Geographic Information System Modeling ................................................................. 15 1.4.5. Geomorphological Mapping…………........................................................................
Recommended publications
  • List of Rivers of Mongolia
    Sl. No River Name Russian Name Draining Into 1 Yenisei River Russia Arctic Ocean 2 Angara River Russia, flowing out of Lake Baikal Arctic Ocean 3 Selenge River Сэлэнгэ мөрөн in Sükhbaatar, flowing into Lake Baikal Arctic Ocean 4 Chikoy River Arctic Ocean 5 Menza River Arctic Ocean 6 Katantsa River Arctic Ocean 7 Dzhida River Russia Arctic Ocean 8 Zelter River Зэлтэрийн гол, Bulgan/Selenge/Russia Arctic Ocean 9 Orkhon River Орхон гол, Arkhangai/Övörkhangai/Bulgan/Selenge Arctic Ocean 10 Tuul River Туул гол, Khentii/Töv/Bulgan/Selenge Arctic Ocean 11 Tamir River Тамир гол, Arkhangai Arctic Ocean 12 Kharaa River Хараа гол, Töv/Selenge/Darkhan-Uul Arctic Ocean 13 Eg River Эгийн гол, Khövsgöl/Bulgan Arctic Ocean 14 Üür River Үүрийн гол, Khövsgöl Arctic Ocean 15 Uilgan River Уйлган гол, Khövsgöl Arctic Ocean 16 Arigiin River Аригийн гол, Khövsgöl Arctic Ocean 17 Tarvagatai River Тарвагтай гол, Bulgan Arctic Ocean 18 Khanui River Хануй гол, Arkhangai/Bulgan Arctic Ocean 19 Ider River Идэр гол, Khövsgöl Arctic Ocean 20 Chuluut River Чулуут гол, Arkhangai/Khövsgöl Arctic Ocean 21 Suman River Суман гол, Arkhangai Arctic Ocean 22 Delgermörön Дэлгэрмөрөн, Khövsgöl Arctic Ocean 23 Beltes River Бэлтэсийн Гол, Khövsgöl Arctic Ocean 24 Bügsiin River Бүгсийн Гол, Khövsgöl Arctic Ocean 25 Lesser Yenisei Russia Arctic Ocean 26 Kyzyl-Khem Кызыл-Хем Arctic Ocean 27 Büsein River Arctic Ocean 28 Shishged River Шишгэд гол, Khövsgöl Arctic Ocean 29 Sharga River Шарга гол, Khövsgöl Arctic Ocean 30 Tengis River Тэнгис гол, Khövsgöl Arctic Ocean 31 Amur River Russia/China
    [Show full text]
  • Key Sites for Key Sites for Conservation
    Directory of Important Bird Areas in Mongolia: KEY SITES FOR CONSERVATION A project of In collaboration with With the support of Printing sponsored by Field surveys supported by Directory of Important Bird Areas in Mongolia: KEY SITES FOR CONSERVATION Editors: Batbayar Nyambayar and Natsagdorj Tseveenmyadag Major contributors: Ayurzana Bold Schagdarsuren Boldbaatar Axel Bräunlich Simba Chan Richard F. A. Grimmett and Andrew W. Tordoff This document is an output of the World Bank study Strengthening the Safeguard of Important Areas of Natural Habitat in North-East Asia,fi nanced by consultant trust funds from the government of Japan Ulaanbaatar, January 2009 An output of: The World Bank study Strengthening the Safeguard of Important Areas of Natural Habitat in North-East Asia,fi nanced by consultant trust funds from the government of Japan Implemented by: BirdLife International, the Wildlife Science and Conservation Center and the Institute of Biology of the Mongolian Academy of Sciences In collaboration with: Ministry of Nature, Environment and Tourism Supporting organisations: WWF Mongolia, WCS Mongolia Program and the National University of Mongolia Editors: Batbayar Nyambayar and Natsagdorj Tseveenmyadag Major contributors: Ayurzana Bold, Schagdarsuren Boldbaatar, Axel Bräunlich, Simba Chan, Richard F. A. Grimmett and Andrew W. Tordoff Maps: Dolgorjav Sanjmyatav, WWF Mongolia Cover illustrations: White-naped Crane Grus vipio, Dalmatian Pelican Pelecanus crispus, Whooper Swans Cygnus cygnus and hunters with Golden Eagles Aquila chrysaetos (Batbayar Nyambayar); Siberian Cranes Grus leucogeranus (Natsagdorj Tseveenmyadag); Saker Falcons Falco cherrug and Yellow-headed Wagtail Motacilla citreola (Gabor Papp). ISBN: 978-99929-0-752-5 Copyright: © BirdLife International 2009. All rights reserved. The use and reproduction of any part of this publication is welcomed for non-commercial purposes only, provided that the source is acknowledged Suggested citation: Nyambayar, B.
    [Show full text]
  • Archaeological Investigations of Xiongnu Sites in the Tamir River
    Archaeological Investigations of Xiongnu Sites in the Tamir River Valley Results of the 2005 Joint American-Mongolian Expedition to Tamiryn Ulaan Khoshuu, Ogii nuur, Arkhangai aimag, Mongolia David E. Purcell and Kimberly C. Spurr Flagstaff, Arizona (USA) During the summer of 2005 an archaeological investigations, and What is known points to this area archaeological expedition jointly their results, are the focus of this as one of the most important mounted by the Silkroad Foun- article, which is a preliminary and cultural regions in the world, a fact dation of Saratoga, California, incomplete record of the project recently recognized by the U.S.A. and the Mongolian National findings. Not all of the project data UNESCO through designation of University, Ulaanbataar, investi- — including osteological analysis of the Orkhon Valley as a World gated two sites near the the burials, descriptions or maps Heritage Site in 2004 (UNESCO confluence of the Tamir River with of the graves, or analyses of the 2006). Archaeological remains the Orkhon River in the Arkhangai artifacts — is available as of this indicate the region has been aimag of central Mongolia (Fig. 1). writing. Consequently, the greater occupied since the Paleolithic (circa The expedition was permitted emphasis falls on one of the two 750,000 years before present), (Registration Number 8, issued sites. It is hoped that through the with Neolithic sites found in great June 23, 2005) by the Ministry of Silkroad Foundation, the many numbers. As early as the Neolithic Education, Culture and Science of different collections from this period a pattern developed in Mongolia. The project had multiple project can be reunited in a which groups moved southward goals: archaeological investiga- scholarly publication.
    [Show full text]
  • Ìîíãîë Íóòàã Äàõü Ò¯¯Õ, Ñî¨Ëûí ¯Ë Õªäëªõ Äóðñãàë
    ÀÐÕÀÍÃÀÉ ÀÉÌÃÈÉÍ ÍÓÒÀà ÄÀÕÜ Ò¯¯Õ, ÑΨËÛÍ ¯Ë ÕªÄËªÕ ÄÓÐÑÃÀË ISBN 978-99962-67-33-8 ÑΨËÛÍ ªÂÈÉÍ ÒªÂ ÌÎÍÃÎË ÍÓÒÀà ÄÀÕÜ Ò¯¯Õ, ÑΨËÛÍ ¯Ë ÕªÄËªÕ ÄÓÐÑÃÀË HISTORICAL AND CULTURAL IMMOVABLE MONUMENTS IN MONGOLIA X ÄÝÂÒÝÐ ÀÐÕÀÍÃÀÉ ÀÉÌÀà 1 ÀÐÕÀÍÃÀÉ ÀÉÌÃÈÉÍ ÍÓÒÀà ÄÀÕÜ Ò¯¯Õ, ÑΨËÛÍ ¯Ë ÕªÄËªÕ ÄÓÐÑÃÀË ÌÎíãÎë íóòàã äàõü ò¯¯õ, ñΨëûí ¯ë õªäëªõ äóðñãàë X äýâòýð ÀðõÀíãÀé ÀéìÀã 1 DDC 900 Ý-66 Зохиогч: Г.Энхбат Г.аНХСАНАА б.ДаваацЭрЭн Гэрэл зургийг: б.ДаваацЭрЭн П.Чинбат Гар зургийг: а.мӨнГӨНЦООЖ т.эРДЭнЭцОГт Г.аНХСАНАА Дизайнер: б.аЛТАНСҮх Орчуулагч: ц.цОЛмОн Жолооч: б.ЭрДЭнЭЧИМЭГ Зохиогчийн эрх хамгаалагдсан. © 2013, Copyrigth © 2013 by the Center of Cultural Соёлын өвийн төв, Улаанбаатар, монгол улс Heritage, Ulaanbaatar, Mongolia Энэхүү цомгийг Соёлын өвийн төвийн зөвшөөрөлгүйгээр бүтнээр нь буюу хэсэгчлэн хувилан олшруулахыг хориглоно. монгол улс Улаанбаатар хот - 211238 Сүхбаатар дүүрэг Сүхбаатарын талбай 3 Соёлын төв өргөө б хэсэг Соёлын өвийн төв Шуудангийн хайрцаг 223 веб сайт: www.monheritage.mn и-мэйл: [email protected] Утас: 976-70110877 ISBN 978-99962-67-33-8 Соёл, Спорт, аялал Соёлын өвийн төв архангай аймгийн жуулчлалын яам музей 2 ÃÀÐ×Èà Өмнөх үг 4 Удиртгал 5 архангай аймгийн нутаг дахь түүх, соёлын үл хөдлөх дурсгалын тухай 18 архангай аймгийн нутаг дахь түүх, соёлын үл хөдлөх дурсгалын байршил 36 батцэнгэл сум 37 булган сум 46 Жаргалант 50 их тамир сум 55 Өгийнуур сум 61 Өлзийт сум 64 Өндөр-Улаан сум 68 тариат сум 73 төвширүүлэх сум 76 хангай сум 78 хайрхан сум 81 хашаат сум 85 хотонт сум 88 цахир сум 91 цэнхэр сум 94 цэцэрлэг сум 97 Чулуут 100 Эрдэнэмандал 103 Эрдэнэбулган 111 архангай аймгийн нутаг дахь түүх, соёлын үл хөдлөх дурсгалын жагсаалт 114 товчилсон үгийн тайлал 116 ашигласан ном бүтээлийн жагсаалт 117 ªÌÍªÕ ¯Ã СаЖЯ-ны харьяа Соёлын өвийн төв монгол нутагт оршин буй түүх, соёлын үл хөдлөх дурсгалыг анхан Сшатны байдлаар бүртгэн баримтжуулах, тоолох, хадгалалт хамгаалалт, ашиглалтын байдалд судалгаа хийх ажлыг 2008-2015 онд гүйцэтгэхээр төлөвлөн хэрэгжүүлж эхлээд байгаа билээ.
    [Show full text]
  • 438962 1 En Bookbackmatter 213..218
    Index A Average temperature, 4, 53, 55, 57, 87, 111, 162, 185 Accumulation, 12, 26, 27, 33, 44, 66, 109, 113, 140, 141, Average wind speed, 64 144–146, 152, 155, 162 Achit lake, 37, 116, 165, 208 Active layer, 122, 124–126, 130 B Active layer thickness, 124–126 Baatarkhaihan, 35 Adaatsag, 46 Baga Bogd, 3, 38, 43, 188 Agricultural land, 136, 195–199 Baga Buural, 47 Airag lake, 91, 208 Baga Gazriin Chuluu, 46, 47 Air temperature variation, 111 Baga Khavtag, 45 Aj Bogd, 35, 190 Baga Khentii, 39, 80, 110 Alag khairhan, 35 Baga Uul, 47 Alasha Gobi, 163, 165 Baishin Tsav, 46 Algae, 161, 166 Baitag Bogd, 45 Alluvial fans and sediments, 45, 46 Baruun Khuurai depression, 28, 158, 181 Alluvial-proluvial plains, 27, 29 Baruun Saikhan, 33, 43 Alluvial soils, 145, 157 Baruunturuun, 68, 136 Alpine belts, 66, 171, 185 Bayan, 3, 7, 34–36, 40, 69, 79, 88, 89, 91, 106, 109, 113 Alpine-type high mountains, 32 Bayanbor, 43 Alpine type relief, 44 Bayan Bumbun Ranges, 35 Altai region, 5, 28, 35, 42, 65, 144 Bayankhairhan, 39 Altai-Sayan ecoregion, 210 Bayantsagaan, 42, 43, 47, 49 Altai Tavan Bogd, 24, 35 Bayan-Ulgii, 7, 69, 113 Altankhukhii, 35 Biological diversity, 182 Altan Ulgii, 39 Birds, 161, 162, 169–175, 207, 208 Altitudinal belts, 6, 163, 177, 182–185, 187, 190, 192 Bogd, 3, 11, 34, 36, 38, 40, 42, 49, 101–103, 106, 181, Angarkhai, 38 188, 204, 208 Animal, 4, 6, 7, 11, 12, 16, 33, 72, 145, 169, 171, 172, Bogd Ulaan, 49 197, 205 Boreal, 6, 163, 164, 187, 210 Annual precipitation, 53, 60, 61, 71, 86, 92, 121, 186, Bor Khairhan, 39 188, 189, 192 Borzon
    [Show full text]
  • Thesis Local Understanding of Hydro-Climate Changes
    THESIS LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by Tumenjargal Sukh Department of Ecosystem Science and Sustainability In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2012 Master’s Committee: Advisor: Steven Fassnacht Melinda Laituri Maria Fernandez-Gimenez Greg Butters Copyright by Tumenjargal Sukh 2012 All Rights Reserved ABSTRACT LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Air temperatures have increased more in semi-arid regions than in many other parts of the world. Mongolia has an arid/semi-arid climate where much of the population is dependent upon the limited water resources, especially herders. This paper combines herder observations of changes in water availability in streams and from groundwater with an analysis of climatic and hydrologic change from station data to illustrate the degree of change of Mongolian water resources. We find that herders’ local knowledge of hydro-climatic changes is similar to the station based analysis. However, station data are spatially limited, so local knowledge can provide finer scale information on climate and hydrology. We focus on two regions in central Mongolia: the Jinst soum in Bayankhongor aimag in the desert steppe region and the Ikh-Tamir soum in Arkhangai aimag in the mountain steppe. As the temperatures have increased significantly (more in Ikh-Tamir than Jinst), precipitation amounts have decreased in Ikh-Tamir which corresponds to a decrease in streamflow, in particular, the average annual streamflow and the annual peak discharge. At Erdenemandal (Ikh-Tamir) the number of days with precipitation has decreased while at Horiult (Jinst) it has increased.
    [Show full text]
  • Part I Master Plan
    PART I MASTER PLAN CHAPTER 1 INTRODUCTION I MASTER PLAN PART I MASTER PLAN CHAPTER 1 INTRODUCTION 1.1 Background of the Study In Mongolia some 50% of the total population of about 2.4 million are nomadic families. For the nomadic families Sum centers are key places for supplying their vital goods, and also for receiving public services such as administration, medical care, education, etc. As of November 1997, the electric power at 117 out of 314 Sum centers in total in Mongolia is being supplied from the national power transmission network. At the remaining 197 Sum centers, the electric power is supplied by the diesel engine generators by Sum center independently. Most of these diesels generating facilities were manufactured during the former Soviet Union era and installed long ago from 1963 to 1990. During the Social Republic era of the country, Mongolia depended on the Soviet Union for the supply of spare parts necessary for maintenance of the generating equipment and technical guidance. Due to the corruption of the Soviet Union's economy in 1991 and associated transition to a market economy, the following four factors caused troubles to the operation and maintenance of the Sum's generating facilities, i.e. (1) the lack of business operating senses, (2) the interruption of spare parts supply, (3) the lack of technical capability and (4) shortage of management budget. The operation of much equipment has been obliged to be kept stopped after failure, as operators cannot repair them. The affected generation quantity, and aggravated the conditions of daily lives of people in Sum center and caused serious effects to the socio-economic activities of the Sum centers.
    [Show full text]
  • Coleoptera: Dytiscidae) 43-53 ©Wiener Coleopterologenverein (WCV), Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Koleopterologische Rundschau Jahr/Year: 2008 Band/Volume: 78_2008 Autor(en)/Author(s): Shaverdo Helena Vladimirovna, Short Andrew Edward Z., Davaadorj E.Enkhnasan Artikel/Article: Diving Beetles of Mongolia (Coleoptera: Dytiscidae) 43-53 ©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at Koleopterologische Rundschau 78 43–53 Wien, Juli 2008 Diving Beetles of Mongolia (Coleoptera: Dytiscidae) H.V. SHAVERDO, A.E.Z. SHORT & E. DAVAADORJ Abstract Sixty-four species of the water beetle family Dytiscidae were collected from 84 localities in the north- central part of Mongolia, in the basin of the Selenge River, during 2003–2006. Twenty species and one subspecies of Dytiscidae are recorded from Mongolia for the first time. According to the present study and literature data, 87 species of Dytiscidae are currently known from Mongolia. Key words: Coleoptera, Dytiscidae, faunistics, Mongolia. Introduction The dytiscid fauna of Mongolia is relatively well known due to the works of BELLSTEDT (1985), BRANCUCCI (1982), BRINCK (1943), GUÉORGUIEV (1965, 1968, 1969, 1972), and more recent Dr. Hildegard studies (FERY 2003, SHAVERDO 2004, SHAVERDO & FERY 2001). WINKLER Nonetheless, new faunistic data and new species of Dytiscidae were obtained recently through the “Selenge River Basin Expeditions, 2003–2006” (FERY & PETROV 2006, SHAVERDO & FERY Fachgeschäft und 2006). Buchhandlung The aim of this paper is to report the faunistic results of the Dytiscidae collected during the “Selenge River Basin Expeditions, 2003–2006”, and to present a checklist of the Mongolian für Entomologie dytiscids known so far. A similar checklist for the Hydrophilidae has been published by SHORT & KANDA (2006).
    [Show full text]
  • CBD Fifth National Report
    CONVENTION ON CONVENTION ON BIOLOGICAL DIVERSITY BIOLOGICAL DIVERSITY THE 5TH NATIONAL REPORT OF MONGOLIA biolohJA JJa folea YeehcO beiide& oa KnWWn}A. T HE CONVENTION ON BIOLOGI 5 T H N A T IO N AL R EPO RT C AL DIVERSITY OF M O N GOLIA MINISTRY OF ENVIRONMENT AND GREEN DEVELOPMENT STEPPE FORWARD PROGRAMME, Government building II, BIOLOGY DEPARTMENT, United Nation’s street 5/2, NATIONAL UNIVERSITY OF MONGOLIA TH Chingeltei District, Ulaanbaatar 15160, NUM, Building-2, Ulaanbaatar, Mongolia THE 5 NATIONAL REPORT OF Mongolia P.O.Box 537, Ulaanbaatar 210646A, Tel: 976-51-266197 Ulaanbaatar, Mongolia E-mail: [email protected] Tel: 976-99180148; 976-88305909; 976-88083058 MONGOLIA E-mail: [email protected]; [email protected]; [email protected] Designed by Mongolica Publishing 2014 Ulaanbaatar, Mongolia. 2014 CONVENTION ON BIOLOGICAL DIVERSITY CONVENTION ON BIOLOGICAL DIVERSITY FINANCED BY: MINISTRY OF ENVIRONMENT AND GREEN DEVELOPMENT CONVENTION ON BIOLOGICAL DIVERSITY-MONGOLIA GLOBAL ENVIRONMENT FACILITY UNITED NATIONS ENVIRONMENTAL PROGRAM CONVENTION ON BIOLOGICAL DIVERSITY THE 5TH NATIONAL REPORT OF MONGOLIA REPORT COMPILERS: COMPILED BY: S. GOMBOBAATAR STEPPE FORWARD PROGRAMME, NUM S. MYAGMARSUREN N. CONABOY М. Мunkhjargal TAXON COMPILERS: PLANT: B. OYUNTSETSEG, M. URGAMAL INVERTEBRATE: S. GANTIGMAA Fish, aMphibian, reptile: kh. Тerbish BIRD: S. GOMBOBAATAR MAMMAL: S. SHAR CONTRIBUTIONS FROM: EDITORS: NATIONAL UNIVERSITY OF MONGOLIA INSTITUTE OF BIOLOGY, MONGOLIAN ACADEMY OF SCIENCES D. BATBOLD MONGOLIAN ORNITHOLOGICAL SOCIETY
    [Show full text]
  • 2 Interaction Between Groundwater of Shallow Aquifers and Surface Water in Russian Territory of the Baikal Basin
    GEF - UNDP - UNOPS Project Integrated Natural Resources Management in the Baikal Basin Transboundary Ecosystem Groundwater Resources in Shallow Transboundary Aquifers in the Baikal Basin: Current Knowledge, Protection and Management A Contribution to the Transboundary Diagnostic Analysis of the Lake Baikal Basin Photo by V.Urbazaev September 2013 UNESCO-IHP This report has been prepared by Dr Jaroslav Vrba, UNESCO-IHP Senior Consultant and Scientific-Technical Coordinator of the Project, in collaboration with the following national experts from Mongolia and the Russian Federation: Dr Borchuluun Urtnasan, Freelance Consultant, Ulaanbataar, Mongolia Dr Buyankhishig Nemer, Associate Professor, Mongolian University of Science and Technology, Ulaanbataar, Mongolia Dr Alexey Maksimovich Plyusnin, Deputy Director for Science of Geological Institute of Siberian Branch of Russian Academy of Science, Chief of Laboratory of Hydrogeology and Geoecology. Ulan-Ude, Russian Federation Dr Marina Aleksandrovna Tugarina, Associate Professor, Irkutsk State Technical University, Department of Applied Geology. Irkutsk, Russian Federation. Acknowledgements The project team wishes to express their gratitude to the following individuals who have actively supported in the activities carried out in the framework of the UNESCO-led groundwater resources activities and contributed to the preparation of this report: Dr Sergey V. Kudelya, Project Manager, Integrated Natural Resources Management in the Baikal Basin Transboundary Ecosystem Mr Boris V. Baduyev, Lake Baikal Project Coordination Unit in Ulan-Ude Dr Munkhbat Tserendorj and Dr Tumurchudur Sodnom, National Project Technical Director for Mongolia Dr Alexander A. Shekhovtsov, National Technical Project Director for the Russian Federation Prof. Alexander I. Smirnov, UNESCO Chair on Water Resources and Rector of Irkutsk State University, Russian Federation Dr Lunten Janchivdorj, UNESCO Chair on Sustainable Groundwater Management, Institute of Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia Dr Larisa D.
    [Show full text]
  • Relict Topography Within the Hangay Mountains in Central Mongolia: 2 Quantifying Long-Term Exhumation and Relief Change in an Old Landscape 3 4 Kalin T
    1 Relict topography within the Hangay Mountains in central Mongolia: 2 Quantifying long-term exhumation and relief change in an old landscape 3 4 Kalin T. McDannella,b*, Peter K. Zeitlera, and Bruce D. Idlemana 5 6 aDepartment of Earth & Environmental Sciences, Lehigh University, 1 W Packer Ave., Bethlehem, PA 18015, USA 7 8 bNatural Resources Canada, Geological Survey of Canada, 3303 33 St NW, Calgary, AB T2L 2A7 9 10 Corresponding author: [email protected] 11 12 Key Points 13 ° New bedrock and detrital apatite (U-Th)/He cooling ages were determined for the Hangay 14 Mountains and central Mongolia 15 ° Thermo-kinematic modeling suggests relief change in the Mesozoic with slow exhumation 16 rates on the order of <20 m/My since the Cretaceous 17 ° Coupled Pecube-Neighborhood Algorithm modeling is successfully applied in a slowly 18 eroding setting 19 20 Abstract 21 The Hangay Mountains are a high-elevation, low-relief landscape within the greater Mongolian 22 Plateau of central Asia. New bedrock apatite (U-Th)/He single-grain ages from the Hangay span 23 ~70 to 200 Ma, with a mean of 122.7 ± 24.0 Ma (2σ). Detrital apatite samples from the Selenga 24 and Orkhon Rivers, north of the mountains, yield dominant (U-Th)/He age populations of ~115 25 to 130 Ma, as well as an older population not seen in the Hangay granitic bedrock data. These 26 low-temperature data record regional exhumation of central Mongolia in the Mesozoic followed 27 by limited erosion of <1-2 km since the Cretaceous, ruling out rapid exhumation of this 28 magnitude associated with any late Cenozoic uplift.
    [Show full text]
  • Glaciers, Permafrost and Lake Levels at the Tsengel Khairkhan Massif, Mongolian Altai, During the Late Pleistocene and Holocene
    Article Glaciers, Permafrost and Lake Levels at the Tsengel Khairkhan Massif, Mongolian Altai, During the Late Pleistocene and Holocene Michael Walther 1,*, Avirmed Dashtseren 1, Ulrich Kamp 2, Khurelbaatar Temujin 1, Franz Meixner 3, Caleb G. Pan 4 and Yadamsuren Gansukh 1 1 Institute of Geography and Geoecology, Mongolian Academy of Sciences, P.O.B. 361, Ulaanbaatar 14192, Mongolia; [email protected] (A.D.); [email protected] (K.T.); [email protected] (Y.G.) 2 Department of Geography, University of Montana, Missoula, MT 59812, USA; [email protected] 3 Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany; [email protected] 4 Systems Ecology Program, University of Montana, Missoula, MT 59812, USA; [email protected] * Correspondence: [email protected]; Tel.: +976-9908-7055 Received: 31 May 2017; Accepted: 11 August 2017; Published: 16 August 2017 Abstract: Understanding paleo—and recent environmental changes and the dynamics of individual drivers of water availability is essential for water resources management in the Mongolian Altai. Here, we follow a holistic approach to uncover changes in glaciers, permafrost, lake levels and climate at the Tsengel Khairkhan massif. Our general approach to describe glacier and lake level changes is to combine traditional geomorphological field mapping with bathymetric measurements, satellite imagery interpretation, and GIS analyses. We also analysed climate data from two nearby stations, and measured permafrost temperature conditions at five boreholes located at different elevations. We identified four glacial moraine systems (M4-M1) and attribute them to the period from the penultimate glaciation (MIS 4/5) until the Little Ice Age (MIS 1).
    [Show full text]