Parasitoids of Nyctemera Annulata (Boisduval) (Lepidoptera: Erebidae)

Total Page:16

File Type:pdf, Size:1020Kb

Parasitoids of Nyctemera Annulata (Boisduval) (Lepidoptera: Erebidae) The Weta 51: 30-35 30 Parasitoids of Nyctemera annulata (Boisduval) (Lepidoptera: Erebidae) BA Gresham, MK Kay* Scion, Private Bag 3020, Rotorua 3046, New Zealand Telephone number: +64 7 343 5899 Emails: [email protected], [email protected] Abstract The endemic erebid moth Nyctemera annulata is a common foliage feeder on many native and exotic Senecio (Compositae) and related species in New Zealand, and plays host to a suite of known larval and pupal parasitoids. In 2010 and 2012 we made a number of collections of N. annulata from two modified habitats, exotic plantation forest and pasture, and reared three parasitoid species from these collections. Two of these parasitoid species, Diolcogaster perniciosus (Hymenoptera: Braconidae) and Echthromorpha intricatoria (Hymenoptera: Ichneumonidae), have previously been recorded from this host. The third parasitoid species, Meteorus pulchricornis (Hymenoptera: Braconidae), has not previously been recorded from Nyctemera annulata and is therefore a new host record for New Zealand. Introduction The endemic erebid moth Nyctemera annulata is a common foliage feeder on many native and exotic Senecio (Compositae) and related species in New Zealand. Larval host plants include the naturalised noxious weeds ragwort (Jacobaea vulgaris Gaertn. (syn. Senecio jacobaea L.)), on which it occasionally causes extensive defoliation, and German ivy (Delairea 31 Gresham and Kay odorata Lem. (syn. Senecio mikanioides Walp.)) (Spiller & Wise 1982; Somerfield 1984). Both larvae and pupae of N. annulata play host to a suite of known parasitoids (Early 1984b). The larvae are heavily parasitized by Microplitis sp. (Braconidae) (Syrett 1983), and Valentine (1967) recorded Apanteles spp. (Braconidae), Pales casta (Hutton) and P. nyctemeriana (Hudson) (Tachinidae) as larval parasitoids. More recently, Diolcogaster perniciosus (Wilkinson) (Braconidae) has also been recorded as a larval parasitoid (Saeed et al. 1999). The pupae are often parasitised by Echthromorpha intricatoria (F.) (Ichneumonidae) (Valentine 1967; Syrett 1983; Early 1984a, 1984b). In 2009 we made an ad hoc collection of N. annulata larvae from exotic plantation forest, and subsequent rearing of those larvae revealed a species of parasitoid previously unrecorded from this host. In 2010 we made further field collections of N. annulata from two modified habitats, exotic plantation forest and pasture, with a final collection from exotic plantation forest in 2012. We present the results of the 2010 and 2012 collections here in this short paper. Materials and Methods Field collections Collections of Nyctemera annulata larvae and pupae were made in March and April 2010 from a total of three North Island sites: Woodhill Forest, located on the coast northwest of Auckland (Pinus radiata plantation forest); Kaingaroa Forest, located in the Central North Island (Pinus radiata plantation forest); and pastoral land near Taupiri, in the Waikato region. Kaingaroa Forest was resampled in February 2012. Collection sites were selected based on previous observations of large resident populations of N. annulata. At each site, potential host plants as well as the soil beneath the plants and nearby inanimate objects were inspected, as final The Weta 51: 30-35 32 instar larvae are known to wander in search of suitable pupation sites. All developmental stages of N. annulata found were collected and returned to the laboratory for rearing. Host rearing and parasitoid collection Collected N. annulata host larvae and pupae were caged in a controlled- environment laboratory (at 20oC, 65% RH and 14 hour photoperiod). Host larvae were reared on cut host plant foliage (the same species from which they were collected – either Jacobaea vulgaris or Senecio sylvaticus L.) in groups of 10-20 within ventilated plastic pottles. Host pupae were held separately in ventilated plastic petri dishes. Host larvae and pupae were monitored closely and any parasitoids were collected as they emerged. All resulting parasitoid adults were either placed into 70% ethanol or kept dry for later identification. Results and Discussion Host plants Nyctemera annulata was collected from ragwort (Jacobaea vulgaris) in Woodhill Forest and from the site near Taupiri, and from Senecio sylvaticus in Kaingaroa Forest. Senecio sylvaticus was particularly abundant in recently harvested areas of Kaingaroa Forest at the time of sampling. Host insects Nyctemera annulata and the closely-related Australian species N. amica (White) are capable of hybridisation, and a hybrid population is known to be established at Woodhill Forest (Kay 1980). Hybrid Nyctemera annulata x amica are readily distinguished from N. annulata by the larger white wing stripes and spots of the adult and the prominent hair pencils 33 Gresham and Kay extending from the head of late-instar larvae (Somerfield 1984). The specimens of Nyctemera collected in Woodhill Forest appeared to be N. annulata sensu stricto but some may have been introgressive hybrids. Parasitoid records Three hymenopterous parasitoids were reared from the collected N. annulata: Diolcogaster perniciosus (Braconidae) A native gregarious larval endoparasitoid which is found throughout New Zealand, as well as eastern and southwestern Australia and Tasmania. Clarke (1996) records D. perniciosus from the closely-related Nyctemera amica in Tasmania. Previously recorded from Nyctemera annulata (Saeed et al. 1999). Echthromorpha intricatoria (Ichneumonidae) A native solitary pupal endoparasitoid found throughout New Zealand and also in Australia. Polyphagous. Previously recorded from Nyctemera annulata (Valentine 1967; Early 1984a, 1984b). Meteorus pulchricornis (Wesmael) (Braconidae) An exotic solitary larval endoparasitoid. Polyphagous. Accidentally introduced to New Zealand and is now widespread (Berry & Walker 2004). This is a new host record for New Zealand. Acknowledgements Thanks to Darren Ward (New Zealand Arthropod Collection, Landcare Research) for identification of parasitoids. Voucher specimens have been deposited in the New Zealand Arthropod Collection (NZAC) and the Scion Forest Insect Collection (FRNZ). Thanks to Mark Miller (Scion) for collections of insects and host plant material from Kaingaroa Forest. The Weta 51: 30-35 34 Thanks to Elizabeth Miller (Scion) for the identification of Senecio sylvaticus. References Berry JA, Walker GP. 2004. Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae: Euphorinae): an exotic polyphagous parasitoid in New Zealand. New Zealand Journal of Zoology 31: 33-44. Clarke AR. 1996. Parasitoids associated with a Tasmanian population of Nyctemera amica (White) (Lepidoptera: Arctiidae). Australian Entomologist 23 (1): 17-20. Early JW. 1984a. Parasites and predators. In: New Zealand Pest and Beneficial Insects (ed RR Scott) pp. 271-308. Lincoln University College of Agriculture, Canterbury. Early JW. 1984b. Insects for weed control. In: New Zealand Pest and Beneficial Insects (ed RR Scott) pp. 309-318. Lincoln University College of Agriculture, Canterbury. Kay M. 1980. Nyctemera amica x N. annulata colony at Woodhill (Lepidoptera: Arctiidae). New Zealand Entomologist 7 (2): 154-158. Saeed A, Austin AD, Dangerfield PC. 1999. Systematics and host relationships of Australasian Diolcogaster (Hymenoptera : Braconidae : Microgastrinae). Invertebrate Taxonomy 13: 117-178. Somerfield KG. 1984. Greenhouse and ornamental pests. In: New Zealand Pest and Beneficial Insects (ed RR Scott) pp. 65-92. Lincoln University College of Agriculture, Canterbury. Spiller DM, Wise KAJ. 1982. A catalogue (1860-1960) of New Zealand insects and their host plants. DSIR Bulletin 231. DSIR Science 35 Gresham and Kay Information Division, New Zealand Department of Scientific and Industrial Research, Wellington. 260 p. Syrett P. 1983. Biological control of ragwort in New Zealand: a review. Australian Weeds 2 (3): 96-101. Valentine EW. 1967. A list of the hosts of entomophagous insects of New Zealand. New Zealand Journal of Science 10: 1100-1209. .
Recommended publications
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • Protection of Pandora Moth (Coloradia Pandora Blake) Eggs from Consumption by Golden-Mantled Ground Squirrels (Spermophilus Lateralis Say)
    AN ABSTRACT OF THE THESIS OF Elizabeth Ann Gerson for the degree of Master of Science in Forest Science presented on 10 January, 1995. Title: Protection of Pandora Moth (Coloradia pandora Blake) Eggs From Consumption by Golden-mantled Ground Squirrels (Spermophilus lateralis Say) Abstract approved: Redacted for Privacy William C. McComb Endemic populations of pandora moths (Coloradia pandora Blake), a defoliator of western pine forests, proliferated to epidemic levels in central Oregon in 1986 and increased dramatically through 1994. Golden-mantled ground squirrels (Spermophilus lateralis Say) consume adult pandora moths, but reject nutritionally valuable eggs from gravid females. Feeding trials with captive S. lateralis were conducted to identify the mode of egg protection. Chemical constituents of fertilized eggs were separated through a polarity gradient of solvent extractions. Consumption of the resulting hexane, dichloromethane, and water egg fractions, and the extracted egg tissue residue, was evaluated by randomized 2-choice feeding tests. Consumption of four physically distinct egg fractions (whole eggs, "whole" egg shells, ground egg shells, and egg contents) also was evaluated. These bioassays indicated that C. pandora eggs are not protected chemically, however, the egg shell does inhibit S. lateralis consumption. Egg protection is one mechanism that enables C. pandora to persist within the forest food web. Spermophilus lateralis, a common and often abundant rodent of central Oregon pine forests, is a natural enemy of C. pandora
    [Show full text]
  • Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India
    ANALYSIS Vol. 21, Issue 68, 2020 ANALYSIS ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India Solomon Raju AJ1, Venkata Ramana K2 1Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India 2Department of Botany, Andhra University, Visakhapatnam 530 003, India Corresponding author: A.J. Solomon Raju, Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India Mobile: 91-9866256682, email: [email protected] Article History Received: 28 June 2020 Accepted: 02 August 2020 Published: August 2020 Citation Solomon Raju AJ, Venkata Ramana K. Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India. Species, 2020, 21(68), 275-280 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT The butterflies Byblia ilithyia (Nymphalidae), Pieris canidia (Pieridae) and Azanus jesous (Lycaenidae) and the day-flying moth, Nyctemera adversata (Erebidae) are oligophagous. Previously, only B. ilithyia has been reported to be occurring in this region while the other three species are being reported for the first time from this region. The larval host plants include Jatropha gossypiifolia and Tragia involucrata for B. ilithyia, Brassica oleracea var. oleracea and B. oleracea var. botrytis for P. canidia, and Acacia auriculiformis for Azanus jesous. The nectar plants include Tragia involucrata, Euphorbia hirta and Jatropha gossypiifolia for B. ilithyia, Premna latifolia and Cleome viscosa for P. canidia, Lagascea mollis, Tridax procumbens and Digera muricata for A. jesous and Bidens pilosa for 275 N. adversata. The study recommends extensive field investigations to find out more larval plants and nectar plants for each Page lepidopteran species now reported.
    [Show full text]
  • 1 © Australian Museum. This Material May Not Be Reproduced, Distributed
    AMS564/002 – Scott sister’s second notebook, 1840-1862 © Australian Museum. This material may not be reproduced, distributed, transmitted, cached or otherwise used without permission from the Australian Museum. Text was transcribed by volunteers at the Biodiversity Volunteer Portal, a collaboration between the Australian Museum and the Atlas of Living Australia This is a formatted version of the transcript file from the second Scott Sisters’ notebook Page numbers in this document do not correspond to the notebook page numbers. The notebook was started from both ends at different times, so the transcript pages have been shuffled into approximately date order. Text in square brackets may indicate the following: - Misspellings, with the correct spelling in square brackets preceded by an asterisk rendersveu*[rendezvous] - Tags for types of content [newspaper cutting] - Spelled out abbreviations or short form words F[ield[. Nat[uralists] 1 AMS564/002 – Scott sister’s second notebook, 1840-1862 [Front cover] nulie(?) [start of page 130] [Scott Sisters’ page 169] Note Book No 2 Continued from first notebook No. 253. Larva (Noctua /Bombyx Festiva , Don n 2) found on the Crinum - 16 April 1840. Length 2 1/2 Incs. Ground color ^ very light blue, with numerous dark longitudinal stripes. 3 bright yellow bands, one on each side and one down the middle back - Head lightish red - a black velvet band, transverse, on the segment behind the front legs - but broken by the yellows This larva had a very offensive smell, and its habits were disgusting - living in the stem or in the thick part of the leaves near it, in considerable numbers, & surrounded by their accumulated filth - so that any touch of the Larva would soil the fingers.- It chiefly eat the thicker & juicier parts of the Crinum - On the 17 April made a very slight nest, underground, & some amongst the filth & leaves, by forming a cavity with agglutinated earth - This larva is showy - Drawing of exact size & appearance.
    [Show full text]
  • Experiments with Feature Transfer for Fine-Grained Multi-Class and One-Class Image Categorization
    Hidden features: Experiments with feature transfer for fine-grained multi-class and one-class image categorization Varvara Vetrova Sheldon Coup Eibe Frank Michael J. Cree School of Mathematics and Statistics Department of Computer Science School of Engineering University of Canterbury University of Waikato University of Waikato Christchurch, New Zealand Hamilton, New Zealand Hamilton, New Zealand fvarvara.vetrova@,[email protected] [email protected] [email protected] Abstract—Can we apply out-of-the box feature transfer using domain [1]. This is particularly useful in situations where little pre-trained convolutional neural networks in fine-grained multi- labeled data is available in the target domain [2], [3]. class image categorization tasks? What is the effect of (a) domain- In this paper, we tackle the challenge of multi-class and specific fine-tuning and (b) a special-purpose network architec- ture designed and trained specifically for the target domain? one-class classification of fine-grained datasets, where accurate How do these approaches perform in one-class classification? recognition of fine detail is important to discriminate between We investigate these questions by tackling two biological object classes of images and thus achieve good classification perfor- recognition tasks: classification of “cryptic” plants of genus mance [4]. Fine-grained recognition tasks differ from general Coprosma and identification of New Zealand moth species. We image classification tasks because variation between images compare results based on out-of-the-box features extracted using a pre-trained state-of-the-art network to those obtained by fine- pertaining to different classes is much smaller.
    [Show full text]
  • Project Noah National Moth Week 2013 Data
    PROJECT NOAH NATIONAL MOTH WEEK 2013 DATA Following the immense success of Project Noah’s collaboration with National Moth Week during the event’s first year, Project Noah participated in the second annual National Moth Week, which occurred from July 20, 2013 to July 28, 2013. Project Noah surpassed its goal of one-thousand moths spotted during National Moth Week with 1347 moths spotted. Spottings were submitted to Project Noah’s Moths of the World mission. Data organization and presentation by Jacob Gorneau. Project Noah National Moth Week 2013 Data | Jacob Gorneau 1 Moths of the World Mission for National Moth Week July 20, 2013 to July 28, 2013 Number Of Spottings Total 1347 Total Unidentified 480 Total Identified 867 Africa 55 Mozambique 1 South Africa 54 Asia 129 Bhutan 47 China 1 India 33 Indonesia 7 Japan 2 Malaysia 3 Philippines 17 Sri Lanka 7 Thailand 10 Turkey 2 Australia 22 Australia 21 New Zealand 1 Europe 209 Belgium 1 Bosnia and Herzegovina 5 Croatia 13 Denmark 66 Project Noah National Moth Week 2013 Data | Jacob Gorneau 2 France 1 Georgia 1 Germany 23 Greece 5 Italy 1 Netherlands 21 Norway 2 Portugal 6 Slovakia 11 Spain 38 Switzerland 1 United Kingdom 14 North America 926 Canada 54 Costa Rica 15 Mexico 84 United States of America 773 South America 6 Brazil 2 Chile 4 Total 7/20/2013 164 Total 7/21/2013 149 Total 7/22/2013 100 Total 7/23/2013 144 Total 7/24/2013 134 Total 7/25/2013 130 Total 7/26/2013 105 Total 7/27/2013 240 Total 7/28/2013 181 Project Noah National Moth Week 2013 Data | Jacob Gorneau 3 Continent/Country/Species Spottings Africa 55 Mozambique 1 Egybolis vaillantina 1 South Africa 54 Agdistis sp.
    [Show full text]
  • The Little Things That Run the City How Do Melbourne’S Green Spaces Support Insect Biodiversity and Promote Ecosystem Health?
    The Little Things that Run the City How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Luis Mata, Christopher D. Ives, Georgia E. Garrard, Ascelin Gordon, Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk, Kirsten Parris and Sarah A. Bekessy The Little Things that Run the City – How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Report prepared for the City of Melbourne, November 2015 Coordinating authors Luis Mata Christopher D. Ives Georgia E. Garrard Ascelin Gordon Sarah Bekessy Interdisciplinary Conservation Science Research Group Centre for Urban Research School of Global, Urban and Social Studies RMIT University 124 La Trobe Street Melbourne 3000 Contributing authors Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk and Kirsten Parris. Cover artwork by Kate Cranney ‘Melbourne in a Minute Scavenger’ (Ink and paper on paper, 2015) This artwork is a little tribute to a minute beetle. We found the brown minute scavenger beetle (Corticaria sp.) at so many survey plots for the Little Things that Run the City project that we dubbed the species ‘Old Faithful’. I’ve recreated the map of the City of Melbourne within the beetle’s body. Can you trace the outline of Port Phillip Bay? Can you recognise the shape of your suburb? Next time you’re walking in a park or garden in the City of Melbourne, keep a keen eye out for this ubiquitous little beetle.
    [Show full text]
  • Neuroscience Needs Ethology: the Marked Example of the Moth Pheromone System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2020 doi:10.20944/preprints202007.0357.v1 Review Neuroscience needs ethology: the marked example of the moth pheromone system Hervé Thevenon 1 1 Affiliation: Spascia; [email protected] 2 Correspondence: [email protected] Abstract: The key premise of translational studies is that knowledge gained in one animal species can be transposed to other animals. So far translational bridges have mainly relied on genetic and physiological similarities, in experimental setups where behaviours and environment are often oversimplified. These simplifications were recently criticised for decreasing the intrinsic value of the published results. The inclusion of wild behaviour and rich environments in neuroscience experimental designs is difficult to achieve because no animal model has it all. As an example, the genetic toolkit of moths species is virtually non-existent when compared to C. elegans, rats, mice, or zebrafish, however the balance is reversed for wild behaviours. The ethological knowledge gathered about the moth was instrumental for designing natural-like auditory stimuli, that were used in association with electrophysiology in order to understand how moths use these variable sounds produced by their predators in order to trump death. Conversely, we are still stuck with understanding how male moths make sense of their complex and diffuse olfactory landscape in order to locate conspecific females up to several hundred meters away, and precisely identify a conspecific in a sympatric swarm in order to reproduce. This systemic review articulates the ethological knowledge pertaining to this unresolved problem and leverages the paradigm to gain insight into how male moths process sparse and uncertain environmental sensory information.
    [Show full text]
  • And Ragwort Flea Beetle, Cinnabar Moths and Other Organisms That Feed on Ragwort
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Interaction of population processes in ragwort (Senecio jacobaea L.) and ragwort flea.bee tle (Longitarsus jacobaeae Waterbouse) A Thesis presented in partial fulflllment of the requirements for the Degree of Doctor of Philosophy in Ecology at Massey University. April 2000 11 Declaration of Originality This thesis represents the original work of the author, except where otherwise acknowledged. It has not been submitted previously for a degree at any University. Aung Kyi III Acknowledgements I am sincerely grateful to my supervisors, Professor Brian Springett, Dr lan Stringer (Ecology, the Institute of Natural Resources, Massey University), and Dr Peter McGregor (Landcare Research) for their encouragement, supervision and patience over this study and their help in drafting this thesis. I am also indebted to Mr Keith Betteridge (AgResearch) for his valuable advice on the laboratory study on the movement of first instar larvae of ragwort flea beetle in different soils; Dr. Ed Minot (Ecology, Massey University) for explaining how to use the STELLA model; Dr. Jill Rapson (Ecology, Massey University) for comments on my PhD thesis proposal; Dr. Siva Ganesh, Dr. Jenny Brown and Mr. Duncan Hedderley (Statistics, Massey University) for help with univariate and multivariate analyses; and Dr. Kerry Harrington (Plant Science, Institute of Natural Resources, Massey University) for his comments and suggestion on the toxicity of ragwort and its chemical control.
    [Show full text]
  • Developing Host Range Testing for Cotesia Urabae
    1 Appendix 2 Appendix 2: Risks to non-target species from potential biological control agent Cotesia urabae against Uraba lugens in New Zealand L.A. Berndt, A. Sharpe, T.M. Withers, M. Kimberley, and B. Gresham Scion, Private Bag 3020, Rotorua 3046, New Zealand, [email protected] Introduction Biological control of insect pests is a sustainable approach to pest management that seeks to correct ecological imbalances that many new invaders create on arrival in a new country. This is done by introducing carefully selected natural enemies of the pest, usually from its native range. This method is the only means of establishing and maintaining self-sustaining control of pest insects and it is highly cost effective in the long term (Greathead, 1995). However there is considerable concern for the risk new biological control agents might pose to other species in the country of introduction, and most countries now have regulations to manage decisions on whether to allow biological control introductions (Sheppard et al., 2003). A key component of the research required to gain approval to release a new agent is host range testing, to determine what level of risk the agent might pose to native and valued species in the country of introduction. Although methods for this are well developed for weed biological control, protocols are less established for arthropod biological control, and the challenges in conducting tests are greater (Van Driesche and Murray, 2004; van Lenteren et al., 2006; Withers and Browne, 2004). This is because insect ecology and taxonomy are relatively poorly understood, and there are many more species that need to be considered.
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]
  • A Field Guide
    BIOLOGICAL CONTROL AGENTS FOR WEEDS IN NEW ZEALAND: A Field Guide Compiled by Lynley Hayes © Landcare Research New Zealand Ltd 2005. This information may be copied and distributed to others without limitation, provided Landcare Research Ltd and the source of the information is acknowledged. Under no circumstances may a charge be made for this information without the express permission of Landcare Research Ltd. Biological control agents for weeds in New Zealand : a field guide. -- Lincoln, N.Z. : Landcare Research, 2005. ISBN 0-478-09372-1 1. Weeds -- Biological control -- New Zealand. 2. Biological pest control agents -- New Zealand. 3. Weeds – Control -- New Zealand. UDC 632.51(931):632.937 Acknowledgements We are grateful to the Forest Health Research Collaborative for funding the preparation of this field guide and to regional councils and the Department of Conservation for funding its production. Thank you to the many people at Landcare Research who provided information or pictures, checked or edited the text, helped with proof-reading, or prepared the layout, especially Christine Bezar and Jen McBride. Contents Foreword Native Insects on Gorse Heather Beetle Tips for Finding Biocontrol Agents Hemlock Moth Hieracium Gall Midge Tips for Safely Moving Biocontrol Agents Around Hieracium Gall Wasp Hieracium Rust Alligator Weed Beetle Mexican Devil Weed Gall Fly Alligator Weed Moth Mist Flower Fungus Blackberry Rust Mist Flower Gall Fly Broom Psyllid Nodding Thistle Crown Weevil Broom Seed Beetle Nodding Thistle Gall Fly Broom Twig Miner
    [Show full text]