Role of Seed Size, Phenology, Oogenesis and Host Distribution In

Total Page:16

File Type:pdf, Size:1020Kb

Role of Seed Size, Phenology, Oogenesis and Host Distribution In View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diposit Digital de Documents de la UAB Integrative Zoology 2018; 13: 267–279 doi: 10.1111/1749-4877.12293 1 ORIGINAL ARTICLE 1 2 2 3 3 4 4 5 5 6 6 7 Role of seed size, phenology, oogenesis and host distribution in the 7 8 8 9 specificity and genetic structure of seed weevils Curculio( spp.) in 9 10 10 11 mixed forests 11 12 12 13 13 14 Harold ARIAS-LECLAIRE1,2 Raúl BONAL,3,4 Daniel GARCÍA-LÓPEZ5 and Josep Maria 14 15 1 15 16 ESPELTA 16 17 1CREAF, Centre for Ecological Research and Forestry Applications, Cerdanyola del Vallès, 08193, Spain, 2Exact and Natural 17 18 Sciences School, State Distance University of Costa Rica, UNED, Mercedes de Montes de Oca, San José, Costa Rica, 3Forest 18 19 19 Research Group, INDEHESA, University of Extremadura, Plasencia, Spain, 4DITEG Research Group, University of Castilla-La 20 20 Mancha, Toledo, Spain and 5Zoology Department, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain 21 21 22 22 23 23 24 Abstract 24 25 25 26 Synchrony between seed growth and oogenesis is suggested to largely shape trophic breadth of seed-feeding in- 26 27 sects and ultimately to contribute to their co-existence by means of resource partitioning or in the time when in- 27 28 festation occurs. Here we investigated: (i) the role of seed phenology and sexual maturation of females in the 28 29 host specificity of seed-feeding weevils (Curculio spp.) predating in hazel and oak mixed forests; and (ii) the 29 30 consequences that trophic breadth and host distribution have in the genetic structure of the weevil populations. 30 31 DNA analyses were used to establish unequivocally host specificity and to determine the population genetic 31 32 structure. We identified 4 species with different specificity, namely Curculio nucum females matured earlier and 32 33 infested a unique host (hazelnuts, Corylus avellana) while 3 species (Curculio venosus, Curculio glandium and 33 34 Curculio elephas) predated upon the acorns of the 2 oaks (Quercus ilex and Quercus pubescens). The high spec- 34 35 ificity of C. nucum coupled with a more discontinuous distribution of hazel trees resulted in a significant genet- 35 36 ic structure among sites. In addition, the presence of an excess of local rare haplotypes indicated that C. nucum 36 37 populations went through genetic expansion after recent bottlenecks. Conversely, these effects were not ob- 37 38 served in the more generalist Curculio glandium predating upon oaks. Ultimately, co-existence of weevil spe- 38 39 cies in this multi-host-parasite system is influenced by both resource and time partitioning. To what extent the 39 40 restriction in gene flow among C. nucum populations may have negative consequences for their persistence in a 40 41 time of increasing disturbances (e.g. drought in Mediterranean areas) deserves further research. 41 42 42 Key words: Corylus avellana, Curculio spp., genetic structure, Quercus spp., trophic breadth 43 43 44 44 45 45 46 46 47 INTRODUCTION 47 48 48 49 Correspondence: Josep Maria Espelta, CREAF, Cerdanyola del Seed predation by insects may play a crucial role in 49 50 Vallès, Spain. plant population dynamics, by reducing the reproductive 50 51 Email: [email protected] output (Bonal et al. 2007; Espelta et al. 2008) and con- 51 © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, 267 Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. H. Arias-LeClaire et al. 1 straining the regeneration process (Espelta et al. 2009b). seeds of different hosts in multi-specific systems has 1 2 Trophic breadth and specificity of seed-feeding insects been seldom explored. 2 3 is often explained by differences among plant hosts in The breadth of the trophic niche of seed-feeding in- 3 4 chemical or morphological traits (Bernays & Graham sects (specialist vs generalist) may influence the num- 4 5 1988; Forister et al. 2015). Differences in phytochemis- ber of species that predate upon different seeds and it 5 6 try (mainly nitrogen-based defensive compounds) have has consequences for the dynamics of the communi- 6 7 been observed to be highly relevant for the diversifi- ty of hosts (Espelta et al. 2009b). However, beyond the 7 8 cation of phytophagous insects and their diet breadth effects on plant fitness, differences in the trophic niche 8 9 (Kergoat et al. 2005). Concerning other seed features, may also influence the population dynamic of the seed 9 10 size is a trait claimed to influence ecomorphological di- consumers (Ylioja et al. 1999) depending on life-his- 10 11 versification in many endophytic insects (e.g. body size tory traits such as dispersal ability and landscape attri- 11 12 and rostrum shape), promoting differences in their tro- butes (i.e. abundance and spatial distribution of hosts). 12 13 phic niche, ecological adaptations and species radiation Spatial connectivity among plant-hosts has been shown 13 14 (Hughes & Voegler 2004a; Bonal et al. 2011; Pegue- to be especially relevant for insects with low disper- 14 15 ro et al. 2017). In addition to chemical and morpholog- sal ability (Thomas et al. 2001; Kruess 2003), resulting 15 16 ical differences, seeding phenology and stochasticity in a stronger genetic structure and reduced gene flow in 16 17 in the availability of this resource have also been sug- the insect populations located on more isolated hosts. In 17 18 gested as key factors influencing the guild of insect spe- the long run, host isolation may even result in coloni- 18 19 cies predating upon a particular plant host (Espelta et zation credits for some insect species, especially those 19 20 al. 2008, 2009b; Coyle et al. 2012; see also Pélisson et with a narrower diet breadth (Ruiz-Carbayo et al. 2016) 20 21 al. 2013a). As insects are short-living organisms, syn- and poor dispersal ability (Pélisson et al. 2013b; Hei- 21 22 chronization of their life-cycle with the resources upon neger et al. 2014). Conversely, generalist species may 22 23 which they depend is critical (Bale et al. 2002, 2007; show a more continuous distribution in the landscape, 23 24 Hood & Ott 2010). Therefore, processes such as adult benefiting from the spatial overlap of the different host 24 25 emergence (Espelta et al. 2017) and oogenesis (Trudel plants upon which they feed (Newman & Pilson 1997), 25 26 et al. 2002; Son & Lewis 2005) have to be tightly con- and show no genetic structure differences among popu- 26 27 nected with the presence of seeds for oviposition (Bonal lations owing to gene flow. Interestingly, for seed-feed- 27 28 et al. 2010). In particular, oogenesis (i.e. egg maturation ing insects a comparison of the genetic structure of their 28 29 in females) has been predicted to differ depending on populations and the spatial structure of their potential 29 30 the stochasticity of seeds availability. Thus, proovigen- hosts could provide strong evidence about differences 30 31 esis (i.e. females have already mature eggs at the onset of the trophic niche breadths. Moreover, the use of mo- 31 32 of their adult life) would be favored in species predating lecular techniques (DNA barcoding) may help to detect 32 33 upon hosts that regularly produce seeds while synovi- cryptic speciation and trophic niche segregation among 33 34 genesis (i.e. females start their adult life with imma- morphologically similar species (Peguero et al. 2017), 34 35 ture eggs) would be advantageous for species exposed and also to establish species specificity in an unequiv- 35 36 to more random fluctuations of seed production (Jervis ocal way in comparison to classifications based on the 36 37 et al. 2008; Richard & Casas 2009), as they can better presence or absence of a species on a particular plant, 37 38 adjust the amount of energy invested in reproduction to especially when the lack of morphological differences 38 39 the amount of seeds (but see Pélisson 2013b). Ultimate- at certain stages (e.g. larvae) make species identification 39 40 ly, the co-existence of the different seed consumers in impossible otherwise (Govindan et al. 2012). Unfortu- 40 41 a multi-host community could be mediated by resource nately, this combination of landscape ecology (i.e. host 41 42 partitioning (e.g. insects predate preferentially upon dif- connectivity) and population genetics when studying the 42 43 ferent species according to different seed traits; see Es- breadth of the trophic niche and dispersal ability of phy- 43 44 pelta et al. 2009a), time-partitioning (e.g. insects exhibit tophagous insects remains largely unexplored. 44 45 45 differences in life span and the timing of seed predation; The main aims of this study have been to investigate 46 46 see Pélisson et al. 2012) or the trade-off among disper- in a multi-host and multi-seed-predator system the role 47 47 sal versus dormancy ability to cope with resource scar- of seed size, seed phenology and ooegenesis in the host 48 48 city (Pélisson et al. 2012). Yet, the importance of the specificity of seed-parasite weevils (Curculio spp.) and 49 49 interplay among seed size, seeding phenology and oo- to analyze the consequences that potential differences 50 50 genesis in driving the guild of insects predating upon in trophic specialization and host distribution may have 51 51 268 © 2017 The Authors.
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • Nematodes and Fungi) Against Curculio Nucum (Coleoptera: Curculionidae)
    saqarTvelos mecnierebaTa erovnuli akademiis moambe, t. 15, #2, 2021 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 15, no. 2, 2021 Parasitology The Effectivenes of Entomopathogenic Microorganizsms (Nematodes and Fungi) Against Curculio nucum (Coleoptera: Curculionidae) Oleg Gorgadze*, Madona Kuchava*, Manana Lortkipanidze*, Nana Gratiashvili*, Medea Burjanadze** *Institute of Zoology, Ilia State University, Tbilisi, Georgia **Vasil Gulisashvili Forest Institute, Agricultural University of Georgia, Tbilisi (Presented by Academy Member Irakli Eliava) The nut weevil (NW), Curculio nucum, is one of the main pests of hazelnuts which damages nut buds, leaves and especially fruits. Sometimes it destroys 80-90 percent of the crop. The study presents the results of using entomopathogenic microorganisms (nematodes and fungi) against NW. Local entomopathogenic nematodes (EPN) Steinernema borjomiense, S. thesami, Heterorhabditis sp. and Boverin's fungi were used against this pest. The tests were carried out in laboratory and field conditions. Nematodes of this species were first used against NW. The tests were carried out separately and together with different doses of nematode concentracions (100, 50 and 25 IJs/insect) and Boverin – (2 g/L and 4 g/L). Among the nematodes used separately against insect pests, S. borjomiense and Heterorhabditis sp. (in a dose of 100 IJs/insect) showed the greatest effect (100%). As for the separate application of Boverin, it turned out to be less effective (42.5% of adults and 43.2% of larvae died). On insect pests, a much greater effect was observed when using combined preparations of nematodes and fungi in laboratory and field trials. In the laboratory, after the use of combined preparations, 100% death of harmful insects is recorded.
    [Show full text]
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Reporting Service 2003, No
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service Paris, 2003-01-01 Reporting Service 2003, No. 01 CONTENTS 2003/001 - Situation of Diabrotica virgifera virgifera in the EPPO region 2003/002 - Outbreak of Pepino mosaic potexvirus in tomato in Germany 2003/003 - Rhagoletis cingulata does not occur in Germany 2003/004 - Molecular characterization of a new virus on pear in Italy 2003/005 - Further details on Puccinia hemerocallidis 2003/006 - Host plants of Phytophthora ramorum 2003/007 - New data on quarantine pests and pests of the EPPO Alert List 2003/008 - Maize fine streak virus, a newly characterized virus of maize in the US 2003/009 - Distribution of Rhynchophorus ferrugineus in coconut plantations 2003/010 - Doses for ionizing irradiation against fruit flies 2003/011 - First report of citrus greening disease in Papua New Guinea 2003/012 - Situation of grapevine yellows in France 2003/013 - EPPO report on notifications of non-compliance (detection of regulated pests) 1, rue Le Nôtre Tel. : 33 1 45 20 77 94 E-mail : [email protected] 75016 Paris Fax : 33 1 42 24 89 43 Web : www.eppo.org EPPO Reporting Service 2003/001 Situation of Diabrotica virgifera virgifera in the EPPO region The situation of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) in Europe was reviewed during the 7th Meeting of the EPPO ad hoc Panel on D. virgifera held jointly with the 9th International IWGO Workshop on D. virgifera in Belgrade, 2002-11-03/05. In summary, D. virgifera has continued to spread in Central Europe in 2002, mainly northwards and westwards (see Figure 1), and the outbreak has now reached Austria and Czechia.
    [Show full text]
  • ENSAYO DE CONTROL DE Curculio Elephas EN BELLOTAS DE ENCINA (Quercus Ilex)
    ENSAYO DE CONTROL DE Curculio elephas EN BELLOTAS DE ENCINA (Quercus ilex) E. PÉREZ-LAORGA (1), A.GIMÉNEZ (2), A. IBÁÑEZ (2), R. GONZÁLEZ ABOLAFIO (3), E. GONZÁLEZ BIOSCA (3), M.M. LÓPEZ GONZÁLEZ (3). (1) Servicio de Prevención de Incendios y Sanidad Forestal. Consellería de Territorio y Vivienda. Generalitat Valenciana. C/ Francisco Cubells, 7. 46011 Valencia. [email protected] (2) PYG Estructuras Ambientales, S.L. Centre per a l’Investigació i la Experimentació Forestal C.I.E.F. Avda. Comarques del País Valencià, nº 114. 46930-Quart de Poblet (Valencia). plagas- [email protected] (3) Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, Moncada, 46113 Valencia. Resumen Las bellotas de encina que se emplean como semillas en viveros y repoblaciones forestales, se ven con frecuencia afectadas por larvas de insectos que merman su viabilidad, siendo las más frecuentes las de curculiónidos del género Curculio. El ensayo ha consistido en la búsqueda de un tratamiento fitosanitario para su control y en el estudio de su influencia sobre la disminución del número de bellotas por él picadas. Los tratamientos probados con deltametrín se han mostrado eficaces para la reducción del número de bellotas afectadas, aumentando el número de frutos sanos y de los que permanecen en el árbol. Debido a que el tratamiento está restringido a un número reducido de encinas en las que se recoge semilla, el impacto en la entomofauna es muy local. En la experiencia inicial de 1998, el número de bellotas con melazo, provocado por la bacteria Brenneria quercina, en los grupos tratados con deltametrín, fue directamente proporcional al número de bellotas afectadas por Curculio sp.
    [Show full text]
  • Descriptors for Hazelnut (Corylus Avellana L.)
    Descriptors for Hazelnut(Corylus avellana L.) List of Descriptors Allium (E, S) 2001 Pearl millet (E/F) 1993 Almond (revised)* (E) 1985 Pepino (E) 2004 Apple* (E) 1982 Phaseolus acutifolius (E) 1985 Apricot* (E) 1984 Phaseolus coccineus* (E) 1983 Avocado (E/S) 1995 Phaseolus lunatus (P) 2001 Bambara groundnut (E, F) 2000 Phaseolus vulgaris* (E, P) 1982 Banana (E, S, F) 1996 Pigeonpea (E) 1993 Barley (E) 1994 Pineapple (E) 1991 Beta (E) 1991 Pistachio (A, R, E, F) 1997 Black pepper (E/S) 1995 Pistacia (excluding Pistacia vera) (E) 1998 Brassica and Raphanus (E) 1990 Plum* (E) 1985 Brassica campestris L. (E) 1987 Potato variety* (E) 1985 Buckwheat (E) 1994 Quinua* (E) 1981 Cañahua (S) 2005 Rambutan 2003 Capsicum (E/S) 1995 Rice* (E) 2007 Cardamom (E) 1994 Rocket (E, I) 1999 Carrot (E, S, F) 1998 Rye and Triticale* (E) 1985 Cashew* (E) 1986 Safflower* (E) 1983 Cherry* (E) 1985 Sesame (E) 2004 Chickpea (E) 1993 Setaria italica and S. pumilia (E) 1985 Citrus (E, F, S) 1999 Shea tree (E) 2006 Coconut (E) 1995 Sorghum (E/F) 1993 Coffee (E, S, F) 1996 Soyabean* (E/C) 1984 Cotton (revised)* (E) 1985 Strawberry (E) 1986 Cowpea (E, P)* 1983 Sunflower* (E) 1985 Cultivated potato* (E) 1977 Sweet potato (E/S/F) 1991 Date Palm (F) 2005 Taro (E, F, S) 1999 Durian (E) 2007 Tea (E, S, F) 1997 Echinochloa millet* (E) 1983 Tomato (E, S, F) 1996 Eggplant (E/F) 1990 Tropical fruit (revised)* (E) 1980 Faba bean* (E) 1985 Ulluco (S) 2003 Fig (E) 2003 Vigna aconitifolia and V.
    [Show full text]
  • And Engelmann Oak (Q. Engelmannii) at the Acorn and Seedling Stage1
    Insect-oak Interactions with Coast Live Oak (Quercus agrifolia) and Engelmann Oak (Q. engelmannii) at the Acorn and Seedling Stage1 Connell E. Dunning,2 Timothy D. Paine,3 and Richard A. Redak3 Abstract We determined the impact of insects on both acorns and seedlings of coast live oak (Quercus agrifolia Nee) and Engelmann oak (Quercus engelmannii E. Greene). Our goals were to (1) identify insects feeding on acorns and levels of insect damage, and (2) measure performance and preference of a generalist leaf-feeding insect herbivore, the migratory grasshopper (Melanoplus sanguinipes [Fabricus] Orthoptera: Acrididae), on both species of oak seedlings. Acorn collections and insect emergence traps under mature Q. agrifolia and Q. engelmannii revealed that 62 percent of all ground-collected acorns had some level of insect damage, with Q. engelmannii receiving significantly more damage. However, the amount of insect damage to individual acorns of both species was slight (<20 percent damage per acorn). Curculio occidentis (Casey) (Coleoptera: Curculionidae), Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae), and Valentinia glandulella Riley (Lepidoptera: Blastobasidae) were found feeding on both species of acorns. No-choice and choice seedling feeding trials were performed to determine grasshopper performance on the two species of oak seedlings. Quercus agrifolia seedlings and leaves received more damage than those of Q. engelmannii and provided a better diet, resulting in higher grasshopper biomass. Introduction The amount of oak habitat in many regions of North America is decreasing due to increased urban and agricultural development (Pavlik and others 1991). In addition, some oak species are exhibiting low natural regeneration. Although the status of Engelmann oak (Quercus engelmannii E.
    [Show full text]
  • Pre-Dispersal Seed Predation by Weevils (Curculio Spp.): the Role of Host-Specificity, Resource Availability and Environmental Factors
    Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – CompartirIgual 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 4.0. Spain License. Pre-dispersal seed predation by weevils (Curculio spp.) The role of host-specificity, resource availability and environmental factors HAROLD ARIAS-LECLAIRE Barcelona, 2018 Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors This page intentionally left blank Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Barcelona, 2018 This page intentionally left blank Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Thesis to be eligible for the Doctor degree and submitted in fulfillment of the requirements of Academic Doctoral program in Biodiversity with the supervision and approval of Dr. Josep Maria Espelta Morral Dr. Raúl Bonal Andrés Universitat de Barcelona Barcelona, 2018 This page intentionally left blank Facultat de Biologia Department de Biologia Evolutiva, Ecologia i Ciències Ambientals Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Research memory presented by Harold Arias-LeClaire for the degree of Doctor at the Universitat de Barcelona Biodiversity Program with the approval of Dr.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California Permalink https://escholarship.org/uc/item/02r7x8r6 Author Halpern, Arielle Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California by Arielle Anita Halpern A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Wayne P. Sousa, Co-Chair Professor Thomas J. Carlson, Co-Chair Professor Scott L. Stephens Frank K. Lake, Ph.D. Spring 2016 Abstract Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California by Arielle Anita Halpern Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Wayne P. Sousa and Professor Thomas J. Carlson, Co-Chairs The targeted application of prescribed fire has long been used by Native Californian peoples to manage plant resources of cultural value. Their ability to employ this management tool has been increasingly restricted by local, state and federal agencies in response to recent drought conditions and the highly flammable state of most western U.S. forests, where, for decades, fires of any magnitude have been suppressed as a matter of policy. This diminished access to cultural prescribed fire has impacted tribal access to many of the plant resources and cultural activities upon which Karuk and Yurok cultures are based.
    [Show full text]
  • December 2020 Year Volume Issue
    DECEMBER 2020 YEAR : 2020 VOLUME : 4 ISSUE : 4 e­ISSN : 2618­5946 doi : 10.31015/jaefs JAEFS International Journal of Agriculture, Environment and Food Sciences Int J Agric Environ Food Sci e­ISSN : 2618­5946 DOI: 10.31015/jaefs www.jaefs.com December Volume : 4 Issue : 4 Year : 2020 International Journal of Agriculture, Environment and Food Sciences JAEFS e­ISSN : 2618­5946 www.jaefs.com Int J Agric Environ Food Sci 4 (4) December 2020 DOI: 10.31015/jaefs Editor­in­Chief Prof.Dr. Gultekin OZDEMIR Agricultural Sciences, Horticulture, Viticulture Dicle University, Faculty of Agriculture, Department of Horticulture, Diyarbakir, Turkey [email protected] ­ [email protected] Co­Editor­in­Chief Prof.Dr. Zeynel CEBECI Agricultural Sciences, Biometry & Genetics Çukurova University, Faculty of Agriculture, Div. of Biometry & Genetics, Adana, Turkey [email protected] Statistical Editor Assoc.Prof.Dr. Şenol ÇELİK Agricultural Sciences, Zootechnics, Biometry & GeneticsBingöl University Faculty of Agriculture Department of Zootechnics Div. of Biometry and GeneticsBingöl, Turkey [email protected] Language Editor Dr. Akbar HOSSAIN Agricultural Sciences, Plant physiology, Weed management, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur­5200, Bangladesh [email protected] Jiban SHRESTHA Agricultural Sciences, Field Crops Nepal Agricultural Research Council, National Commercial Agriculture Research Program, Pakhribas, Dhankuta, Nepal [email protected] I International Journal of Agriculture, Environment and Food Sciences JAEFS e­ISSN : 2618­5946 www.jaefs.com Int J Agric Environ Food Sci 4 (4) December 2020 DOI: 10.31015/jaefs Editorial Board Prof.Dr. Hakan AKTAS Agricultural Sciences, Horticulture Suleyman Demirel University, Faculty of Agriculture Department of Horticulture, Isparta, Turkey [email protected] Prof.Dr.
    [Show full text]
  • Satiation of Predispersal Seed Predators: the Importance of Considering Both Plant and Seed Levels
    Evol Ecol DOI 10.1007/s10682-006-9107-y ORIGINAL PAPER Satiation of predispersal seed predators: the importance of considering both plant and seed levels Raul Bonal Æ Alberto Mun˜ oz Æ Mario Dı´az Received: 11 November 2005 / Accepted: 10 August 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Plants can reduce the fitness costs of granivory by satiating seed pre- dators. The most common satiation mechanism is the production of large crops, which ensures that a proportion of the seeds survive predation. Nevertheless, satiation of small granivores at the seed level may also exist. Larger seeds would satiate more efficiently, enhancing the probability of seed survival after having been attacked. However, a larger seed size could compromise the efficiency of satiation by means of large crops if there were a negative relationship between seed size and the number of seeds produced by an individual plant. We analyze both types of satiation in the interaction between the holm oak Quercus ilex and the chestnut weevil Curculio elephas. Both crop size and acorn size differed strongly in a sample of 32 trees. Larger crop sizes satiated weevils, and higher proportions of the seeds were not attacked as crop size increased. Larger seeds also satiated weevil larvae, as a larger acorn size increased the likelihood of embryo survival. Seedling size was strongly related to acorn size and was reduced by weevil attack, but seedlings coming from large weeviled acorns were still larger. The number and the size of the acorns produced by individual trees were nega- tively related. Larger proportions of the crop were infested in oaks producing less numerous crops of larger acorns.
    [Show full text]