Using a Microwave to Prepare Bacterial Media for Inquiry-Based Experiments Judith A

Total Page:16

File Type:pdf, Size:1020Kb

Using a Microwave to Prepare Bacterial Media for Inquiry-Based Experiments Judith A Illinois Math and Science Academy DigitalCommons@IMSA Staff ubP lications & Research Student Inquiry and Research (SIR) Fall 2014 Watts Cooking: Using a Microwave to Prepare Bacterial Media for Inquiry-Based Experiments Judith A. Scheppler Illinois Mathematics and Science Academy, [email protected] Follow this and additional works at: http://digitalcommons.imsa.edu/sir_staffpr Part of the Education Commons, and the Microbiology Commons Recommended Citation Scheppler, Judith A., "Watts ooC king: Using a Microwave to Prepare Bacterial Media for Inquiry-Based Experiments" (2014). Staff Publications & Research. 2. http://digitalcommons.imsa.edu/sir_staffpr/2 This Article is brought to you for free and open access by the Student Inquiry and Research (SIR) at DigitalCommons@IMSA. It has been accepted for inclusion in Staff ubP lications & Research by an authorized administrator of DigitalCommons@IMSA. For more information, please contact [email protected], [email protected]. Articles Watts Cooking: Using a Microwave to Prepare Bacterial Media for Inquiry-Based Experiments Judith A. Scheppler Illinois Mathematics and Science Academy Abstract depend on the knowledge base students bring to Microbiology provides an excellent opportunity this experience. to capture student interest, encourage explora- tion, and to begin the development of research Preparation and Sterilization of Luria-Ber- skills. With a low power microwave, similar to tani Agar for Bacterial Growth the type found in homes, and a short list of ma- Bacteria media plates will need to be prepared terials easily obtainable and/or found in many at least one day in advance of carrying out any biology laboratories, you can begin to open this experiment. The following procedure should be exciting world to your life science and biology used to prepare sterile Luria-Bertani (LB) agar classes. Microwaves are available at very rea- media, in a microwave, for use in experiments sonable prices, and can substitute for a much with bacteria. Other kinds of bacterial media more expensive laboratory autoclave. Your stu- may be prepared in a similar manner. Luria- dents can choose and design inquiry investiga- Bertani broth is made with the same formulation, tions as well as learn basic laboratory techniques. leaving out the agar; the agar (similar to gelatin in Jello-O) serves to make the media semi-solid. Bacterial Culture Students across all grade ranges and ability levels Materials are naturally fascinated by the growth of microor- - sterile swabs (Q-tips, though not sterile, are ganisms, especially those growing in their envi- clean and work fine) ronment. However, in order to observe and study - balance bacteria, growth media, or food that the bacteria - microwave need to thrive, must be prepared and sterilized. - hot pads In a research or clinical laboratory this is done by - 1 ml pipetting device and 1 ml pipettes heating the media to 121 ºC and 15 psi pressure, - four sterile plastic petri dishes per student group a process known as autoclaving. This kills both - one 250 ml flask or bottle per group (make vegetative and spore forms of microbes and is the sure it isn’t too tall for the microwave) most effective method of sterilization. However, - wax marking pencil or permanent marker an autoclave (figure 1) can be very costly and is - tryptone not always available in schools with increasingly - yeast extract tight science budgets. Purchasing prepared me- - sodium chloride dia plates can be costly. Using a low power mi- - agar crowave provides an inexpensive alternative for - solution of 0.1 N NaOH preparing sterile media to be used in investiga- - distilled water tions of bacterial growth most often performed - beaker or tray containing 10% chlorine bleach in schools. The depth of these investigations will for disposal of used swabs and Petri dishes Fall 2014 13 Figure 1. Left: A large industrial size autoclave; cost $10,000+ plus plumbing and electrical work required. Middle: A small table-top autoclave; cost ~$2000 - $5000 or more. Right: A household microwave; cost $100 or less. Optional materials for Sabouraud’s agar ingredients. The media should boil vigorously - peptone for about 5 seconds, but microwaving for too - dextrose long will boil the solution over. Once done, the solution should appear clear with no media gran- Procedure ules visible. If the media is not clear, then con- 1) Obtain four sterile Petri dishes and label the tinue microwaving in short 10-15 second bursts bottom with your name, date, and “LB,” then until all components are dissolved (figure 2). turn the plates right side up. This identifies who - This procedure was worked out for a 1000 or made the plates, how old they are, and what me- 1100 watt microwave; microwave ovens of lesser dia is contained in the Petri dish. The Petri dishes power will require slightly longer times. are already sterile, so do not take the lids off the 5) Once all of the ingredients have dissolved, mi- plates until the media is poured into the bottom. crowave the solution for 15-20 seconds to bring 2) Weigh out the following ingredients for “LB” it to boiling. The solution should boil vigorously and place all of them into a 250ml flask or bottle: again, but not boil over. 1 gram of tryptone 6) Bring the media to boiling two more times by 0.5 gram of yeast extract repeating step 5 twice. 1 gram of NaC1 - Be very careful because the bottle is very hot. 1.5 grams of agar Media may superheat. This means that it may boil up when agitated, even after the initial roll- - Use a container that holds two to three times the ing boil has stopped. Allow the bottle to stay in volume of media you wish to make so that the the microwave for a few minutes before handling media can boil vigorously without boiling over. to reduce the danger associated with superheat- Make sure your contained will fit in the micro- ing. Use hot pads when handling the media from wave. the microwave. 7) Place the bottle of LB agar media in a water 3) Add 100 ml of distilled water and 1 ml of 0.1 bath, adjusted to 56 ºC, and allow the media to N NaOH. Do not put a lid on the container. cool. Loosely cover the bottle with its lid or a piece of foil. This temperature will prevent the Students should be assisted with the following media from solidifying, but allow it to be han- steps dled more safely and easily. Petri dishes may 4) Microwave the media for 60-90 seconds to be poured immediately after microwaving, with bring the solution to boiling and to dissolve the close and careful supervision, but it is best to 14 ISTA Spectrum, Volume 40, Number 2 This prevents any moisture, which may have condensed in the lid when the warm media was poured, from falling into the bacteria and con- taminating them or disrupting colony formation. Most bacteria like to grow in warm places. Usu- ally 37 ºC, which is also body temperature, is perfect. Obtaining this temperature, however, requires an incubator that many classrooms may not have. A very viable alternative is to grow the bacteria at room temperature, usually about 25 ºC. The bacteria will still grow, just more slowly than they would at 37 ºC. Try to pick one of the warmer locations in the room, such as away from the windows in the winter. Avoid placing the Pe- Figure 2. Left: Flask with poorly dissolved agar; note the cloudiness of the liquid and the powder granules tri dishes directly onto a radiator or heating vent, at the bottom. Right: Flask with agar that has been however, as the metal may get hot enough when properly heated in a microwave to thoroughly dissolve in direct contact with the plastic Petri dish to the agar. Note that the liquid is clear. melt it and the agar. Growth is usually assessed after 24 hours, but plates may need to incubate for 48 hours or longer if incubation temperatures cool the media to avoid student burns and melt- are less than 37 ºC. ing plates. 8) Pour the liquid LB agar media into the bottom An Inexpensive Incubator of the four petri dishes. Pour slowly and stop A heating pad and Styrofoam container can be when the media has covered the bottom of the used to make an inexpensive incubator. Place a plate (about 20-25 ml). Be sure to work in an heating pad in the bottom of a plastic or Styro- aseptic manner. This means do not leave the Pe- foam bin, then put four jars in each corner and tri dishes open on the lab table and replace the put another bin on top of the jars. Put the plates covers as quickly as possible. in the upper bin, and cover your incubator with 9) Allow the plates to sit at room temperature un- a lid. til the agar has solidified. Do not move or tilt the plates until the media has hardened. Plates may be stored at room temperature for several days before use. Plates should be stored inverted, with the solidified agar media in the “top” so that con- densation (a potential source of contamination) can’t fall onto the agar (figure 3). For longer storage, place the inverted agar plates in a plastic bag to prevent dehydration of the media and store them stacked in the refrigerator. Plates may be stored in the refrigerator for one month or longer. Figure 3. Left: A Petri dish turned upside down. Bacterial Incubation Right: An agar-filled Petri dish with the agar in the Once the media plates have been inoculated bottom; note the condensation on the lid of the dish.
Recommended publications
  • Exploring Small-Scale Chemostats to Scale up Microbial Processes: 3-Hydroxypropionic Acid Production in S
    Lawrence Berkeley National Laboratory Recent Work Title Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Permalink https://escholarship.org/uc/item/43h8866j Journal Microbial cell factories, 18(1) ISSN 1475-2859 Authors Lis, Alicia V Schneider, Konstantin Weber, Jost et al. Publication Date 2019-03-11 DOI 10.1186/s12934-019-1101-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Lis et al. Microb Cell Fact (2019) 18:50 https://doi.org/10.1186/s12934-019-1101-5 Microbial Cell Factories RESEARCH Open Access Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae Alicia V. Lis1, Konstantin Schneider1,2, Jost Weber1,3, Jay D. Keasling1,4,5,6,7, Michael Krogh Jensen1 and Tobias Klein1,2* Abstract Background: The physiological characterization of microorganisms provides valuable information for bioprocess development. Chemostat cultivations are a powerful tool for this purpose, as they allow defned changes to one single parameter at a time, which is most commonly the growth rate. The subsequent establishment of a steady state then permits constant variables enabling the acquisition of reproducible data sets for comparing microbial perfor- mance under diferent conditions. We performed physiological characterizations of a 3-hydroxypropionic acid (3-HP) producing Saccharomyces cerevisiae strain in a miniaturized and parallelized chemostat cultivation system. The physi- ological conditions under investigation were various growth rates controlled by diferent nutrient limitations (C, N, P). Based on the cultivation parameters obtained subsequent fed-batch cultivations were designed. Results: We report technical advancements of a small-scale chemostat cultivation system and its applicability for reliable strain screening under diferent physiological conditions, i.e.
    [Show full text]
  • Detection of Acid-Producing Bacteria Nachweis Von Säureproduzierenden Bakterien Détection De Bactéries Produisant Des Acides
    (19) TZZ ¥ _T (11) EP 2 443 249 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/04 (2006.01) G01N 33/84 (2006.01) 19.11.2014 Bulletin 2014/47 (86) International application number: (21) Application number: 10790013.6 PCT/US2010/038569 (22) Date of filing: 15.06.2010 (87) International publication number: WO 2010/147918 (23.12.2010 Gazette 2010/51) (54) DETECTION OF ACID-PRODUCING BACTERIA NACHWEIS VON SÄUREPRODUZIERENDEN BAKTERIEN DÉTECTION DE BACTÉRIES PRODUISANT DES ACIDES (84) Designated Contracting States: (74) Representative: Isarpatent AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Patent- und Rechtsanwälte GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Friedrichstrasse 31 PL PT RO SE SI SK SM TR 80801 München (DE) (30) Priority: 15.06.2009 US 187107 P (56) References cited: 15.03.2010 US 314140 P US-A- 4 528 269 US-A- 5 098 832 US-A- 5 164 301 US-A- 5 601 998 (43) Date of publication of application: US-A- 5 601 998 US-A- 5 786 167 25.04.2012 Bulletin 2012/17 US-B2- 6 756 225 US-B2- 7 150 977 (73) Proprietor: 3M Innovative Properties Company • DARUKARADHYA J ET AL: "Selective Saint Paul, MN 55133-3427 (US) enumeration of Lactobacillus acidophilus, Bifidobacterium spp., starter lactic acid bacteria (72) Inventors: and non-starter lactic acid bacteria from Cheddar • YOUNG, Robert, F. cheese", INTERNATIONAL DAIRY JOURNAL, Saint Paul, Minnesota 55133-3427 (US) ELSEVIER APPLIED SCIENCE, BARKING, GB, • MACH, Patrick, A.
    [Show full text]
  • Chemostat Culture for Yeast Experimental Evolution
    Downloaded from http://cshprotocols.cshlp.org/ at Cold Spring Harbor Laboratory Library on August 9, 2017 - Published by Cold Spring Harbor Laboratory Press Protocol Chemostat Culture for Yeast Experimental Evolution Celia Payen and Maitreya J. Dunham1 Department of Genome Sciences, University of Washington, Seattle, Washington 98195 Experimental evolution is one approach used to address a broad range of questions related to evolution and adaptation to strong selection pressures. Experimental evolution of diverse microbial and viral systems has routinely been used to study new traits and behaviors and also to dissect mechanisms of rapid evolution. This protocol describes the practical aspects of experimental evolution with yeast grown in chemostats, including the setup of the experiment and sampling methods as well as best laboratory and record-keeping practices. MATERIALS It is essential that you consult the appropriate Material Safety Data Sheets and your institution’s Environmental Health and Safety Office for proper handling of equipment and hazardous material used in this protocol. Reagents Defined minimal medium appropriate for the experiment For examples, see Protocol: Assembly of a Mini-Chemostat Array (Miller et al. 2015). Ethanol (95%) Glycerol (20% and 50%; sterile) Yeast strain of interest Equipment Agar plates (appropriate for chosen strain) Chemostat array Assemble the apparatus as described in Miller et al. (2013) and Protocol: Assembly of a Mini-Chemostat Array (Miller et al. 2015). Cryo deep-freeze labels Cryogenic vials Culture tubes Cytometer (BD Accuri C6) Glass beads, 4 mm (sterile; for plating yeast cells) Glass cylinder Kimwipes 1Correspondence: [email protected] © 2017 Cold Spring Harbor Laboratory Press Cite this protocol as Cold Spring Harb Protoc; doi:10.1101/pdb.prot089011 559 Downloaded from http://cshprotocols.cshlp.org/ at Cold Spring Harbor Laboratory Library on August 9, 2017 - Published by Cold Spring Harbor Laboratory Press C.
    [Show full text]
  • Microbiology Laboratory Exercises Third Edition 2020
    MICROBIOLOGY Laboratory Exercises Third Edition Keddis & Rauschenbach 2020 Photo Credits (in order of contribution): Diane Davis, Ines Rauschenbach & Ramaydalis Keddis Acknowledgements: Many thanks to those in the Department of Biochemistry and Microbiology, Rutgers University, who have through the years inspired our enthusiasm for the science and teaching of microbiology, with special thanks to Diane Davis, Douglas Eveleigh and Max Häggblom. Safety: The experiments included in this manual have been deemed safe by the authors when all necessary safety precautions are met. The authors recommend maintaining biosafety level 2 in the laboratory setting and using risk level 1 organisms for all exercises. License: This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Microbiology Laboratory Exercises Third Edition 2020 Ramaydalis Keddis, Ph.D. Ines Rauschenbach, Ph.D. Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey CONTENTS PAGE Introduction Schedule ii Best Laboratory Practices Iii Working in a Microbiology Laboratory iv Exercises Preparation of a Culture Medium 1 Culturing and Handling Microorganisms 3 Isolation of a Pure Culture 5 Counting Bacterial Populations 8 Controlling Microorganisms 10 Disinfectants 10 Antimicrobial Agents: Susceptibility Testing 12 Hand Washing 14 The Lethal Effects of Ultraviolet Light 15 Selection of Fungi from Air 17 Microscopy 21 Morphology and Staining of Bacteria 26 Microbial Metabolism 30 Enzyme Assay 32 Metabolic
    [Show full text]
  • Page 1 of 27 the Diagram Shows Two Thermometers. the Bulb of Each
    Q1. The diagram shows two thermometers. The bulb of each thermometer is covered with a piece of wet cotton wool. One of the thermometers is placed in the draught from a fan. The graph shows how the temperature of each thermometer changes with time. (a) Which of the graph lines, A or B, shows the temperature of the thermometer placed in the draught? Write the correct answer in the box. Page 1 of 27 Explain, in terms of evaporation, the reason for your answer. ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ (3) (b) A wet towel spread out and hung outside on a day without wind dries faster than an identical wet towel left rolled up in a plastic bag. Explain why. ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ (2) (Total 5 marks) Q2. The picture shows a person taking a hot shower. (a) When a person uses the shower the mirror gets misty. Why? ___________________________________________________________________ ___________________________________________________________________
    [Show full text]
  • Maintenance of Bacterial Strains
    Maintenance of Bacterial Strains Short-term growth and maintenance The simplest method for obtaining strains is to order them from a microbiological supply company. Presque Isle, Ward, and Carolina Biological (see “Resources” page of the Microbes Web site: www.umsl.edu/~microbes) are economical sources of strains that are commonly used in the classroom. Another possible source is a local college or university that teaches a microbiology lab course. If they have strains already prepared for their class, they will probably be willing to provide you with a culture. This is probably not a reasonable ongoing source of strains, but can be useful in an emergency. For short-term maintenance and use, it is best to streak bacteria on some type of rich agar petri plate, such as nutrient agar. Label and date the plate on the bottom of the plate. Streak from the source culture using good sterile technique. The quadrant streak method (see the article on quadrant streaking) is good for obtaining well-isolated colonies. Incubate the plate only until good colonies have formed. Do not leave the culture in the incubator beyond that time, or the cells will die on the plate. Store the plate in the refrigerator. It will keep for about a month. For class use, it is best to streak a fresh plate 2-3 days before the strain will be needed for class. Use the fresh plate as the source of cultures for the class. For broth cultures for a class, it is best to grow a larger volume culture in a flask (if possible, with shaking) overnight and then dispense aliquots of the master culture into sterile test tubes using a sterile pipette.
    [Show full text]
  • Pouring Plates from Prepared Bottled Media
    Pouring Plates from Prepared Bottled Media Primary Hazard Warning Never purchase living specimens without having a disposition strategy in place. When pouring bottles, agar is HOT! Burning can occur. Always handle hot agar bottles with heat-protective gloves. For added protection wear latex or nitrile gloves when working with bacteria, and always wash hands before and after with hot water and soap. Availability Agar is available for purchase year round. Information • Storage: Bottled agar can be stored at room temperature for about six months unless otherwise specified. Never put agar in the freezer. It will cause the agar to breakdown and become unusable. To prevent contamination keep all bottles and Petri dishes sealed until ready to use. • Pouring Plates • Materials Needed: • Draft-free enclosure or Laminar flow hood • 70% isopropyl alcohol • Petri dishes • Microwave or hot water bath or autoclave 1. Melt the agar using one of the following methods: a) Autoclave: Loosen the cap on the agar bottle and autoclave the bottle at 15 psi for five minutes. While wearing heat-protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. This takes approximately 15 minutes. b)Water Bath: Loosen the cap on the agar bottle and place it into a water bath. Water temperature should remain at around 100°C. Leave it in the water bath until the agar is completely melted. While wearing heat- protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. c) Microwave: Loosen the cap on the agar bottle before microwaving.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Microlab® STAR™
    Microlab ® STAR™ Microlab ® STAR ™ AUTOMATED WORKFLOW SOLUTIONS CENTERED AROUND YOUR ASSAY The STAR combines Hamilton's patented pipetting technology including precise lock-and-key tip attachment, unrivaled liquid level detection, and comprehensive volume ranges to create flexible liquid handling workstations. Available in three base platform sizes, the STAR portfolio incorporates countless options to automate your workflows. Hamilton Robotics has also partnered with top leaders in the biotechnology industry to provide Standard Solutions based on commonly automated applications. Offering ready-to-start protocols for a variety of applications such as NGS, ELISA, and forensic assays, our Standard Solutions provide a faster way to automate your processes. 2 1 PATENTED TECHNOLOGY The STAR utilizes Hamilton’s proprietary Compressed O-Ring Expansion (CO-RE®) technology. CO-RE minimizes the production of aerosols and allows disposable tips or washable, steel needles to be used on channels in the same run. 2 MULTI-FUNCTIONAL ARM Our technology offers high pipetting accuracy and precision, from sub-microliter to large volumes, using Independent Channels and/or the Multi-Probe Head (MPH). Labware transportation is possible with the iSWAP® or CO-RE Grippers. The STAR can incorporate a camera, tube transportation, and other channel tools on a single arm. Comprehensive pipetting range: ■■■0.5 μL to 1 mL using the 1 mL Independent Channel ■■■50 μL to 5 mL using the 5 mL Independent Channel ■■■1 μL to 1 mL using the CO-RE 96 MPH ■■■0.1 μL to 50 μL using the CO-RE 384 MPH 3 FLEXIBLE SETUP The high-capacity deck is customized specific to your workflow, accommodating a wide range of labware and automated devices that can easily be exchanged to support multiple assays on one platform.
    [Show full text]
  • Method 1604: Total Coliforms and Escherichia Coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium)
    Method 1604: Total Coliforms and Escherichia coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium) September 2002 U.S. Environmental Protection Agency Office of Water (4303T) 1200 Pennsylvania Avenue, NW Washington, DC 20460 EPA-821-R-02-024 Disclaimer The Engineering and Analysis Division, of the Office of Science and Technology, has reviewed and approved this report for publication. The Office of Science and Technology directed, managed, and reviewed the work of DynCorp in preparing this report. Neither the United States Government nor any of its employees, contractors, or their employees make any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use of or the results of such use of any information, apparatus, product, or process discussed in this report, or represents that its use by such party would not infringe on privately owned rights. The content of this method version is identical to the February 2000 version of Membrane Filter Method for the Simultaneous Detection of Total Coliforms and Escherichia coli in Drinking Water (EPA-600-R- 00-013) with one exception, the addition of MI broth. Since MI broth was approved on November 6, 2001, as a minor modification of the MI agar method, it has also been included in this document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Questions concerning this method or its application should be addressed to: Robin K. Oshiro Engineering and Analysis Division (4303T) U.S. EPA Office of Water, Office of Science and Technology 1200 Pennsylvania Avenue, NW Washington, DC 20460 [email protected] 202-566-1075 202-566-1053 (facsimile) Table of Contents 1.0 Scopeand Application ........................................................
    [Show full text]
  • Hitouch™ E.Coli/ Coliform Count Flexi Plate FL002
    HiTouch™ E.Coli/ Coliform Count Flexi Plate FL002 For enumeration (count) of all coliform along with differential count of E.coli. Composition** Ingredients Gms / Litre Tryptose 14.000 Peptone special 5.000 Bile salts mixture 1.500 Disodium hydrogen phosphate 1.000 Monosodium dihydrogen phosphate 0.600 Sodium chloride 2.400 Chromogen 0.075 Indicator dye 0.100 Agar 12.000 Final pH ( at 25°C) 7.3±0.2 **Formula adjusted, standardized to suit performance parameters Directions Open the pouch in the protected area . Remove the wrappping and open the lid and carefully lift up the enclosed prepared medium plate so as to avoid touching the agar surface by hand.Touch the surface of agar plate onto the surface to be tested. Gently press the plate manually for upto 10 sencond. Apply constant and uniform pressure to the whole surface (ensuring that an even pressure of 25 gm/cm2 is distributed over the whole plate for 10 seconds). Replace exposed medium plate back in the base plate. Close the lid. Press the sides of the lid to make sure that it is fixed in the grooves. Disinfect the surface where the sample was taken in order to remove any possible traces of agar. Incubate the plates at specified temperature. After incubation as recommended count the number of colonies which have appeared on the surface of medium. Alternative Methods of Inoculation : To use as Culture Plate (ii), Sample Dilution Plate (iii) or Swabbing Plate (iv) To use as Gravitation Settling Plate (v).These plates are specially developed for microbial testing,The Flexi plate medium formula is suitable for enumeration ofyeast and mould(fungal) population and the grids enable direct reading on the plates of the number of colonies per cm2.
    [Show full text]
  • Evobot: an Open-Source, Modular, Liquid Handling Robot for Scientific Experiments
    applied sciences Article EvoBot: An Open-Source, Modular, Liquid Handling Robot for Scientific Experiments Andres Faiña 1,* , Brian Nejati 2 and Kasper Stoy 1 1 Robots, Evolution and Art Lab (REAL), Department of Computer Science, IT University of Copenhagen, 2300 Copenhagen, Denmark; [email protected] 2 Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada; His work was carried out while he was employed at ITU; [email protected] * Correspondence: [email protected]; Tel.: +45-7218-5258 Received: 13 October 2019; Accepted: 17 January 2020; Published: 23 January 2020 Featured Application: Our modular liquid handling robot can be applied to automate scientific experiments in research labs, where tasks change often, and to carry out new kinds of experiments that cannot be done manually. Abstract: Commercial liquid handling robots are rarely appropriate when tasks change often, which is the case in the early stages of biochemical research. In order to address it, we have developed EvoBot, a liquid handling robot, which is open-source and employs a modular design. The combination of an open-source and a modular design is particularly powerful because functionality is divided into modules with simple, well-defined interfaces, hence customisation of modules is possible without detailed knowledge of the entire system. Furthermore, the modular design allows end-users to only produce and assemble the modules that are relevant for their specific application. Hence, time and money are not wasted on functionality that is not needed. Finally, modules can easily be reused. In this paper, we describe the EvoBot modular design and through scientific experiments such as basic liquid handling, nurturing of microbial fuel cells, and droplet chemotaxis experiments document how functionality is increased one module at a time with a significant amount of reuse.
    [Show full text]