Neuroeconomics: Decision Making and the Brain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroeconomics: the Neurobiology of Decision-Making
Neuroeconomics: The Neurobiology of Decision-Making Ifat Levy Section of Comparative Medicine Department of Neurobiology Interdepartmental Neuroscience Program Yale School of Medicine Harnessing eHealth and Behavioral Economics for HIV Prevention and Treatment April 2012 Overview • Introduction to neuroeconomics • Decision under uncertainty – Brain and behavior – Adolescent behavior – Medical decisions Overview • Introduction to neuroeconomics • Decision under uncertainty – Brain and behavior – Adolescent behavior – Medical decisions Neuroeconomics NeuroscienceNeuronal MentalPsychology states “asEconomics if” models architecture Abstraction Neuroeconomics Behavioral Economics Neuroscience Psychology Economics Abstraction Neuroscience functional MRI VISUAL STIMULUS functional MRI: Blood Oxygenation Level Dependent signals Neural Changes in oxygen Change in activity consumption, blood flow concentration of and blood volume deoxyhemoglobin Change in Signal from each measured point in space at signal each point in time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 dorsal anterior posterior lateral ventral dorsal anterior medial posterior ventral Anterior The cortex Cingulate Cortex (ACC) Medial Prefrontal Cortex (MPFC) Posterior Cingulate Cortex (PCC) Ventromedial Prefrontal Cortex (vMPFC) Orbitofrontal Cortex (OFC) Sub-cortical structures fMRI signal • Spatial resolution: ~3x3x3mm3 Low • Temporal resolution: ~1-2s Low • Number of voxels: ~150,000 High • Typical signal change: 0.2%-2% Low • Typical noise: more than the signal… High But… • Intact human -
Volatility As Link Between Risk and Memory in Economics, Econometrics and Neuroeconomics: an Application for the Bolivian Inflation Rate 1938 - 2012
Volatility as link between risk and memory in Economics, Econometrics and Neuroeconomics: an application for the Bolivian Inflation Rate 1938 - 2012 María Edith Chacón B. [email protected] Teacher and researcher CIDES – UMSA. La Paz, Bolivia. Ernesto Sheriff B. [email protected] Teacher and researcher CIDES – UMSA and UPB. La Paz, Bolivia. Experimental and Behavioral Economics: Other Neuroeconomics Econometrics: Time Series ABSTRACT This paper provides an indicator that measures memory as a stock. Memory affects economic decisions thus the memory indicator is useful to help in applied work, it was built according to the state of the art in Psychology and Neuroeconomics and it is presented as a time series; it is a recursive one and it is represented by an accumulated measure of the volatility. Many theories of risk have used volatility indicators to represent risk in the applied work. Risk valuation is associated to volatility and it is very sensitive to periods in which it is measured; it is very sensitive too to the type of data associated to volatility. In this paper we found that the memory affects risk valuations and the link between them is a special kind of volatility i.e. accumulated volatility with an endogenous initialization period and compatible with many Psychological hypotheses. The developed indicator is compatible with the econometrics of stationary series, integrated series and fractional integrated series. These contributions help to improve the study of hysteresis in applied economics, to develop more consistent links between memory and risk in Neuroeconomics and, to obtain more confident time series models in econometrics using the new indicator. -
Behavioral Economics Comes of Age
Behavioral Economics Comes of Age Wolfgang Pesendorfer† Princeton University May 2006 † I am grateful to Markus Brunnermeier, Drew Fudenberg, Faruk Gul and Wei Xiong for helpful comments. 1. Introduction The publication of “Advances in Behavioral Economics” is a testament to the success of behavioral economics. The book contains important second-generation contributions to behavioral economics that build on the seminal work by Kahnemann, Tversky, Thaler, Strotz and others. Behavioral economics is organized around experimental findings that suggest inade- quacies of standard economic theories. The most celebrated of those are (i) failures of expected utility theory; (ii) the endowment effect; (iii) hyperbolic discounting and (iv) social preferences. Most of the articles collected in Advances deal with one of these four topics. Expected Utility: Expected utility theory assumes the independence axiom. The (stochastic version of the) independence axiom says that the frequency with which a pool of subjects chooses lottery p over q doesnotchangewhenbothlotteriesaremixedwithsome common lottery r. Experiments by Allais, Kahnemann and Tversky and others demon- strate systematic failures of the independence axiom. Chapter 4 in the book discusses this experimental evidence and the theories that address it. Kahnemann and Tversky (1979) develop prospect theory to address the failures of expected utility theory. They argue that when analyzing choice under uncertainty it is not enough to know the lotteries an agent is choosing over. Rather, we must know more about thesubject’ssituationatthetimehemakeshischoice.Prospecttheorydistinguishes between gains and losses from a situation-specific reference point. The agent evaluates gains and losses differently and exhibits first-order risk aversion locally around the reference point. The Endowment Effect: In standard consumer theory, demand is a function of wealth and prices but does not depend on the composition of the endowment. -
Economists As Worldly Philosophers
Economists as Worldly Philosophers Robert J. Shiller and Virginia M. Shiller Yale University Hitotsubashi University, March 11, 2014 Virginia M. Shiller • Married, 1976 • Ph.D. Clinical Psychology, University of Delaware 1984 • Intern, Cambridge Hospital, Harvard Medical School, 1980-1 • Clinical Instructor, Yale Child Study Center, since 2000 • Private practice with children, adults, and families Robert Heilbroner 1919-2005 • His book The Worldly Philosophers: Lives, Times and Ideas of the Great Economic Thinkers, 1953, sold four million copies • Adam Smith, Henry George, Karl Marx, John Stewart Mill, John Maynard Keynes, Thomas Malthus Example: Adam Smith • Theory of Moral Sentiments, 1759 • The Wealth of Nations, 1776 • Did not shrink from moral judgments, e. g., frugality Example: John Maynard Keynes • Economic Consequences of the Peace • The General Theory of Employment, Interest and Money, 1936 Economics as a Moral Science • The kinds of questions economists are asked to opine on are inherently moral • Moral calculus requires insights into the complexities of human behavior • A plea for behavioral economics and a broader focus for economic research Kenneth Boulding 1910-1993 • “We cannot escape the proposition that as science moves from pure knowledge toward control, that is, toward creating what it knows, what it creates becomes a problem of ethical choice, and will depend upon the common values of the societies in which the scientific culture is embedded, as well as of the scientific subculture.” Boulding on the Theory that People Maximize Utility of their Own Consumption • That there is neither malevolence nor benevolence anywhere in the system is demonstrably false. • “Anything less descriptive of the human condition could hardly be imagined.” (from American Economics Association Presidential Address, 1968). -
Prospect Theory
Prospect Theory Warwick Economics Summer School Prospect Theory Eugenio Proto University of Warwick, Department of Economics July 19, 2016 Prospect Theory, 1 of 44 Prospect Theory Outline 1 General Introduction 2 The Expected Utility Theory 3 Main Departures from Expected Utility 4 Prospect Theory 5 Empirical Evidence Finance Economic Development Housing Markets Labor Market Domestic Violence 6 Summary Prospect Theory, 2 of 44 Prospect Theory General Introduction Behavioral Economics Economics and Psychology were not separated Adam Smith: The theory of Moral Sentiments Jeremy Bentham, the psychological underpinnings of Utility Francis Edgeworth, concept of envy in Utility Functions Prospect Theory, 3 of 44 Prospect Theory General Introduction Behavioral Economics, cont'd Neoclassical Revolution separated clearly Psychology and Economics Economics like a natural (and not a social) science Psychology has too unsteady foundations Utility can be defined as an ordinal (and not a cardinal) object Rejection of the hedonistic assumptions of Benthamite Utility Neoclassical economists expunged the psychology from economics Prospect Theory, 4 of 44 Prospect Theory General Introduction Behavioral Economics, cont'd Some early Criticism to the neoclassical economy from Irwing Fisher, J.M. Keynes,, Herbert Simon More from Allais (1953), Ellsberg (1961), Markowitz (1952), Strotz (1955), following the Expected Utility Theory and the discounted utility models Kahneman and Tversky (1979) on expected utility, Thaler (1981) and Loewenstain and Prelec (1992) -
2 Cognitive Load Increases Risk Aversion 5 2.1 Introduction
Essays in Experimental and Neuroeconomics DISSERTATION zur Erlangung des akademischen Grades Dr. rer. pol. im Fach Volkswirtschaftslehre eingereicht an der Wirtschaftswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Diplom-Volkswirt Holger Gerhardt geboren am 17. Januar 1978 in Arnsberg Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Wirtschaftswissenschaftlichen Fakultät: Prof. Oliver Günther, Ph. D. Gutachter: 1. Prof. Lutz Weinke, Ph. D. 2. Prof. Dr. Hauke R. Heekeren eingereicht am: 9. Mai 2011 Tag des Kolloquiums: 20. Juni 2011 Contents 1 Introduction 1 Bibliography . 3 2 Cognitive load increases risk aversion 5 2.1 Introduction . 5 2.2 Related literature . 7 2.2.1 Introductory remarks . 7 2.2.2 Overview of dual-system and “dual-self” approaches . 7 2.2.3 Subjective expected-utility theory as a unitary-process model of decision making under risk . 10 2.2.4 Dual-process approaches to decision making under risk . 11 2.2.5 Empirical evidence on dual processes in decision making under risk . 12 2.3 Experimental design . 17 2.3.1 Introduction: Advantages of our design over alternative designs . 17 2.3.2 Trial setup . 18 2.3.3 Additional measures of individual differences . 24 2.4 Results . 24 2.4.1 Introductory remarks . 24 2.4.2 Were the tasks adequate? . 25 2.4.3 How did subjects allocate attention to the two simultane- ous tasks? . 25 2.4.4 Preference reversal?—How often did subjects choose the riskier lottery? . 26 2.4.5 Structural regressions: the influence of additional cognitive load on subjects’ degree of relative risk aversion . -
How Prospect Theory Can Improve Legal Counseling
University of Arkansas at Little Rock Law Review Volume 24 Issue 1 The Ben J. Altheimer Symposium: The Article 4 Impact of Science on Legal Decisions 2001 How Prospect Theory Can Improve Legal Counseling John M.A. DiPippa University of Arkansas at Little Rock William H. Bowen School of Law, [email protected] Follow this and additional works at: https://lawrepository.ualr.edu/lawreview Part of the Law and Society Commons, Legal History Commons, and the Legal Profession Commons Recommended Citation John M.A. DiPippa, How Prospect Theory Can Improve Legal Counseling, 24 U. ARK. LITTLE ROCK L. REV. 81 (2001). Available at: https://lawrepository.ualr.edu/lawreview/vol24/iss1/4 This Essay is brought to you for free and open access by Bowen Law Repository: Scholarship & Archives. It has been accepted for inclusion in University of Arkansas at Little Rock Law Review by an authorized editor of Bowen Law Repository: Scholarship & Archives. For more information, please contact [email protected]. HOW PROSPECT THEORY CAN IMPROVE LEGAL COUNSELING John MA. DiPippa" I. INTRODUCTION Rational choice is the law's predominate model.' The law believes that (1) clients are rational, and (2) they will act rationally by choosing the path that leads to maximum utility, and (3) lawyers act profession- ally when they base their professional behavior on these assumptions. Clients need the information that will allow them (or their lawyer) to calculate the costs and benefits of each decision. In essence, law transplants the assumptions of classical economics into the realm of lawyer-client decision making.' Recent research casts doubt on the rational choice model of decision making. -
Bounded Rationality Till Grüne-Yanoff* Royal Institute of Technology, Stockholm, Sweden
Philosophy Compass 2/3 (2007): 534–563, 10.1111/j.1747-9991.2007.00074.x Bounded Rationality Till Grüne-Yanoff* Royal Institute of Technology, Stockholm, Sweden Abstract The notion of bounded rationality has recently gained considerable popularity in the behavioural and social sciences. This article surveys the different usages of the term, in particular the way ‘anomalous’ behavioural phenomena are elicited, how these phenomena are incorporated in model building, and what sort of new theories of behaviour have been developed to account for bounded rationality in choice and in deliberation. It also discusses the normative relevance of bounded rationality, in particular as a justifier of non-standard reasoning and deliberation heuristics. For each of these usages, the overview discusses the central methodological problems. Introduction The behavioural sciences, in particular economics, have for a long time relied on principles of rationality to model human behaviour. Rationality, however, is traditionally construed as a normative concept: it recommends certain actions, or even decrees how one ought to act. It may therefore not surprise that these principles of rationality are not universally obeyed in everyday choices. Observing such rationality-violating choices, increasing numbers of behavioural scientists have concluded that their models and theories stand to gain from tinkering with the underlying rationality principles themselves. This line of research is today commonly known under the name ‘bounded rationality’. In all likelihood, the term ‘bounded rationality’ first appeared in print in Models of Man (Simon 198). It had various terminological precursors, notably Edgeworth’s ‘limited intelligence’ (467) and ‘limited rationality’ (Almond; Simon, ‘Behavioral Model of Rational Choice’).1 Conceptually, Simon (‘Bounded Rationality in Social Science’) even traces the idea of bounded rationality back to Adam Smith. -
The Future of Economics in a Lakatos–Bourdieu Framework
Munich Personal RePEc Archive The Future of Economics in a Lakatos–Bourdieu Framework. Heise, Arne University of Hamburg 2014 Online at https://mpra.ub.uni-muenchen.de/80024/ MPRA Paper No. 80024, posted 05 Jul 2017 05:42 UTC The Future of Economics in a Lakatos-Bourdieu framework Prof. Arne Heise University of Hamburg Dep. of Socioeconomics VMP 9 D-20146 Hamburg [email protected] Abstract The global financial crisis has clearly been a matter of great consternation for the busi- ness-as-usual faction of mainstream economics. Will the World Financial Crisis turn out to be that ‘experimentum crucis’ which triggered a scientific revolution? In this paper, we seek to assess the likelihood of a paradigm shift towards heterodox approaches and a more pluralist setting in economics emerging from the academic establishment in the U.S. – that is, from the dominant center of knowledge production in the economic disci- pline. This will be done by building the analysis on a combined Lakatosian framework of ‘battle of research programmes’ and a Bourdieuian framework of ‘power struggle’ within the academic field and highlighting the likelihood of two main proponents of the mainstream elite to become the promulgator of change? Keywords: Paradigm, heterodox economics, scientific revolution JEL codes: A 11, E 11, E 12 1 1. The Keynesian Revolution and Pragmatic Pluralism – A Fruitful Competition Between Theories or a Crisis in Economics? John Maynard Keynes concludes ‘The General Theory of Employment, Interest, and Money’ (1936: 383-84) with the following, now-famous words: „At the present moment people are unusually expectant of a more funda- mental diagnosis; more particularly ready to receive it; eager to try it out, if it should be even possible. -
John Von Neumann Oskar Morgenstern
Neuroeconomics: From The Failures of Expected Utility to the Neurobiology of Choice Paul Glimcher PhD Julius Silver Professor of Neural Science, Economics and Psychology Director, Institute of the Study of Decision Making New York University Blaise Pascal Genius: Expected Value Theory Expected Probability x Value = Value #1 0.5 100 50 #2 1.0 45 45 Pascal's Wager If God Exists If God Doesn't Exist (Prob 3 Value) + (Prob 3 Value) = Exp. Value Believe in God >0 3 `$++ 0 3 0 = ` Do not Believe >0 3 2` ++ $0 3 0 = 2` in God Problem: The Beggar’s Dilemma Daniel Bernoulli Genius: Expected Utility Theory Beggar’s Dilemma 4.3 3.8 Beggar’s Utility (utils) Beggar’s 0 7000 20,000 Rich Man’s Choice Beggar’s Wealth (florins) 6.0056 6.0 5.9969 Rich Man’s Utility (utils) Rich Man’s Problem: 0 losses wins Value ($) Bentham, Pareto, Samuelson 993,000 1,013,000 1,000,000 Jeremy Bentham Vilfredo Pareto Paul Samuelson The Calculus of Utility The Intrinsic Arbitrariness of Utility Ordinal Objective Utility John von Neumann Oskar Morgenstern Genius: Modern Expected Utility Theory 0 < a <1 a $ s = Expected 35til u Utility weight s.w. = prob Subjective 0 Utility (utils) 0 Probability Dollars ($) Critcal Advantages: • Precise • Compact • Normative (people Problem: make sense) Maurice Allais Maurice Allais People Do Not Obey EU all the time 0 < a <1 a $ s = Expected 35til u Utility weight s.w. = prob Subjective 0 Utility (utils) 0 XProbability Dollars ($) Critcal Questons: • How to Predict People? • Are People Dumb? • Why? Amos Tversky Danny Kahneman Prospect Theory Critcal Advantages: • Predictive Critcal Disadvantages: • Bulky • No Why Behavioral Traditional Social-Natural Science Boundary Economics vs. -
Direct Tests of Cumulative Prospect Theory⇤
Direct Tests of Cumulative Prospect Theory⇤ B. Douglas Bernheim † Charles Sprenger‡ Stanford University and NBER UC San Diego First Draft: December 1, 2014 This Version: November 8, 2016 Abstract Cumulative Prospect Theory (CPT), the leading behavioral account of decision making under uncertainty, assumes that the probability weight applied to a given outcome depends on its ranking. This assumption is needed to avoid the violations of dominance implied by Prospect Theory (PT). We devise a simple test involving three-outcome lotteries, based on the implication that compensating adjustments to the payo↵s in two states should depend on their rankings compared with payo↵s in a third state. In an experiment, we are unable to find any support for the assumption of rank dependence. We separately elicit probability weighting functions for the same subjects through conventional techniques involving binary lotteries. These functions imply that changes in payo↵rank should change the compensating adjustments in our three-outcome lotteries by 20-40%, yet we can rule out any change larger than 7% at standard confidence levels. Additional tests nevertheless indicate that the dominance patterns predicted by PT do not arise. We reconcile these findings by positing a form of complexity aversion that generalizes the well-known certainty e↵ect. JEL classification: D81, D90 Keywords:ProspectTheory,CumulativeProspectTheory,RankDependence,CertaintyEquiv- alents. ⇤We are grateful to Ted O’Donoghue, Colin Camerer, Nick Barberis, Kota Saito, and seminar participants at Cornell, Caltech, and Gary’s Conference (UC Santa Barbara) for helpful and thoughtful discussions. Fulya Ersoy, Vincent Leah-Martin, Seung-Keun Martinez, and Alex Kellogg all provided valuable research assistance. -
Neuroeconomics
Handbook of Experimental Economics Editors: John Kagel and Alvin Roth Neuroeconomics Colin Camerer1 (California Institute of Technology), Jonathan Cohen2 (Princeton University), Ernst Fehr3 (University of Zurich), Paul Glimcher4 (New York University), David Laibson5 (Harvard University) 1Division HSS, Caltech, [email protected]; 2Princeton Neuroscience Institute, Princeton University, [email protected]; 3University of Zurich, Department of Economics, [email protected]; 4Center for Neural Science, New York University, [email protected]; 5Department of Economics, Harvard University, [email protected]. We gratefully acknowledge research assistance from Colin Gray and Gwen Reynolds and key guidance from John Kagel, Alvin Roth, and an anonymous referee. We also acknowledge financial support from the Moore Foundation (Camerer), the National Science Foundation (Camerer), and the National Institute of Aging (Cohen; Glimcher, R01AG033406; Laibson, P01AG005842), the Swiss National Science Foundation (Fehr, CRSII3_141965/1) and the European Research Council (Fehr, 295642). Hyperlink Page Introduction Chapter 1: Neurobiological Foundations Chapter 2: Functional MRI Chapter 3: Risky Choice Chapter 4: Intertemporal choice and self-regulation Chapter 5: The neural circuitry of social preferences Chapter 6: Strategic thinking References Introduction “One may wonder whether Adam Smith, were he working today, would not be a neuroeconomi[st]” Aldo Rustichini (2005). Neuroeconomics is the study of the biological microfoundations of economic