University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-2016 Recycling of Neodymium and Dysprosium from Permanent Magnets Alan X. Dai University of Pennsylvania,
[email protected] Connor A. Lippincott University of Pennsylvania,
[email protected] Michael E. Nissan University of Pennsylvania,
[email protected] Richard Shim University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Dai, Alan X.; Lippincott, Connor A.; Nissan, Michael E.; and Shim, Richard, "Recycling of Neodymium and Dysprosium from Permanent Magnets" (2016). Senior Design Reports (CBE). 81. https://repository.upenn.edu/cbe_sdr/81 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/81 For more information, please contact
[email protected]. Recycling of Neodymium and Dysprosium from Permanent Magnets Abstract This project seeks to recycle neodymium and dysprosium from used neodymium-iron-boron, NdFeB, permanent magnets. Our alternative recycling strategy is based on a method developed by Dr. Eric Schelter of the University of Pennsylvania Department of Chemistry and his research group. This process involves the use of a novel tripodal nitroxide ligand, H3TriNOX. The proposed process design converts used NdFeB magnets to neodymium and dysprosium. The goal production of neodymium oxide is 126,000 kg/year and of dysprosium oxide is 14,000 kg/year, which would cost $12,500,000 with the current price rate of neodymium and dysprosium. Based on the results of the economic analysis, this project would be unprofitable in the near future. Disciplines Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cbe_sdr/81 Professor Leonard Fabiano Dr.