Self-Propagating Metathesis Preparations of Inorganic Materials

Total Page:16

File Type:pdf, Size:1020Kb

Self-Propagating Metathesis Preparations of Inorganic Materials Self- Propagating Metathesis Preparations of Inorganic Materials. A thesis presented by Andrew Lee Hector, B.Sc.(Hons.), A R C S., C.Chem. M.R.S.C. in partial fullfilment for the award of Ph.D. University College London, Chemistry Department. November 1995. ProQuest Number: 10045820 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10045820 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract. The potential of self- propagating reactions, with reagents such as lithium nitride, calcium nitride, sodium arsenide and magnesium silicide, in the production of inorganic materials has been investigated. Reactions were performed with anhydrous d- block and rare earth metal chlorides and can be described by the following generic equation where M is a Group 3-12 metal, Aik is a Group 1 or 2 element and E is Si, N, P, As, Sb, Bi or O. MClm + xAlknE -> yM«E + xAlkClp + zEy Crude products were obtained normally as fused masses of material consisting of the products coated in the alkali chloride co- products. Grinding followed by washing with an appropriate solvent yielded the pure products with low levels of contamination from the other elements present in the reaction flux. The phases produced include rare earth and transition metal nitrides, metals and alloys, d- block phosphides, arsenides and antimonides, metal silicides and d- block oxides. The products were variously characterised by X- ray powder diffraction, scanning electron microscopy, energy dispersive X-ray analysis, magnetic susceptability, X- ray photoelectron spectroscopy, microanalysisand solid state (magic angle spinning) nuclear magnetic resonance spectroscopy. Thermocouple experiments, differential scanning calorimetry, photography and constant pressure calculations were used to examine the thermal aspects and timescales of reactions. Dilution with inert solids was used to reduce voracity of reactions and to control crystallinity of products. Liquid chlorides (TiCU and VCU) were successfully employed to make high quality ternary phases such as Tio. 5Vo.5E (E= N, P, As). Such reactions can progress via ionic or elemental mechanisms and evidence for either of these was gathered. Examples were found for both mechanisms which supported that the process was occurring. These conclusions were based on end- product analysis since the reaction conditions and timescales precluded the use of other techniques. Acknowledgements. Firstly, I would like to thank my boss, Ivan Parkin, for his help, ideas, comedy hairdo, enthusiasm, patience, etc. etc. Ade Rowley & Jon Fitzmaurice have been very influential in this work and their help is much appreciated. Also, thanks to the other members of the group: Jon Cotter, Qi Fang, Alexei Komarov, Graham Combe, Leigh Nixon, Graham Shaw & Mark Lavender. Thanks to Tim Healy for inspiration. Simon Drake & Tony Hill for originally suggesting me for the post. The Open University Research Council & University College London Provost Fund for providing the money to carry out this research. At the OU, Little Robbie Thied, Jo Hood, Steve Robinson, Mick Boiler, Ade Parry, Hayley Jacobs, Graham Jeffs, Jim Gibbs, Alan Leslie, Pravin Patel, Graham Oates, Charlie Harding, Leslie Smart, David Roberts, David Johnson, Sally Eaton & Jenny Burridge. Naomi Williams (OU Materials) for lots of time and help on the SEM. At UCL, Laura Gellman, Ian Shannon, Elizabeth Maclean, Geoff Henshaw, Ken Harris, Steve Price, Andrea Sella, Dave Knapp, Joe Nolan, Peter Leighton, Alan Stones, Jill Maxwell, John Hill & John Cresswell Kevin Reeves (Inst, of Archaeology) for assistance with the SEM. Marianne Odlyha (Birkbeck) for help with DSC/ TGA. Dr. Apperly of the EPSRC service at Durham for sohd state NMR. For their fnendship, Jason, Catherine, Mark, Alison & David, Andy & Lucie, Patti & Ben, Sarah & Andy, Luke, Marte, Marcus, Dave, Anna, Paul, Shirley & Fletch. My great gratitude to Mum & Dad for every kind of help and support. Thanks to the rest of my family, old and new, for being there. And most of all, thanks to Allison & Becky, my new wife & stepdaughter, for giving me great happiness and a focus for the future. Contents. Page Abstract. 2 Acknowledgements. 3 Contents. 4 Tables. 6 Figures. 7 Abbreviations. 9 1 Introduction. 10 1.1 Synthetic Approaches. 11 1.2 Microwave Heating. 13 1.3 The Sol- Gel Process. 15 1.4 Precursor Decomposition. 17 1.5 High Surface Area Syntheses. 2 0 1.6 Self- Propagating Reactions. 21 1.7 Metathetical Reactions. 23 1.8 Objectives. 25 2 Metal Nitride Synthesis with LijN. 26 2.1 Properties and Applications of Nitrides. 27 2 .2 Reactions of Lithium Nitride with Transition Metal Chlorides. 30 2.3 Thermal Aspects of Reactions. 35 2.4 Synthesis of Rare Earth Nitrides. 38 2.5 Reactions Involving Two Metal Chlorides. 40 2 .6 Reactions with Liquid Chlorides. 42 2.7 Dilution Experiments. 42 2 .8 Summary and Relevance to Mechanistics. 45 2.9 Experimental. 50 3 Reactions of Metal Chlorides with NaNa and Group 2 Nitrides. 53 3.1 Reactions with Sodium Azide. 54 3.2 Thermally Initiated Reactions with Calcium and Magnesium Nitride. 57 3.3 Filament Initiation of Reactions. 61 3.4 Summary and Relevance to Reaction Mechanism. 64 3.5 Experimental. 6 6 4 Reactions of Metal Chlorides with NaaPn (Pn= P, As, Sb, Bi). 67 4.1 Properties of Phosphides. 69 4.2 Reactions of Sodium Phosphide. 70 4.3 Properties of Arsenides, Antimonides and Bismuthides. 75 4.4 Reactions of Sodium Arsenide. 76 4.5 Reactions of Sodium Antimonide and Bismuthide. 79 4.6 Reactions of Titanium and Vanadium Tetrachlorides. 81 4.7 Summary and Mechanistic Discussion. 83 4.8 Experimental. 85 5 Reactions of Metal Chlorides with MgzSi. 87 5.1 Properties of Silicides. 8 8 5.2 Reactions of Magnesium Silicide. 89 5.3 Mechanistic Discussion. 96 5.4 Experimental. 97 6 Reactions of Metal Chlorides with Li^O. 98 6 .1 Properties of Oxides. 99 6.2 Reactions of Lithium Oxide. 102 6.3 Experimental. 108 Appendices. 110 References. 116 Publications. 127 Tables. Page 1. Effect of Microwave Heating on the Temperatures of Solids. 14 2 . Solid State Synthesis of Oxides. 14 3. Some Materials Produced by Self- Propagating High Temperature Synthesis. 23 4. Stoichiometric Nitride Phases. 28 5. Products of Reactions with Lithium Nitride and Their Lattice Parameters. 31 6 . Decomposition Temperatures of Some Nitrides. 34 7. Evolution of Nitrogen as Detected by Gas Chromatography. 35 8 . X-ray Diffraction Data and Magnetic Susceptibilities of the Rare Earth Nitride Products. 39 9. Products of Reactions of Equimolar Mixtures of Metal Chlorides with LisN. 41 10. Phases Detected by X-ray Diffraction from Reactions of Sodium Azide with Anhydrous Metal Chlorides. 55 11. X-ray Diffraction Data for the Rare Earth Nitride Products. 59 12. Products of Reactions of Transition Metal Chlorides with Magnesium and Calcium Nitrides. 60 13. Products of Filament Initiated Reactions with Magnesium and Calcium Nitride. 61 14. X-ray Diffraction Data for Sodium Pnictides. 6 8 15. Products of Reactions of Metal Chlorides with Sodium Phosphide. 71 16. Products of Reactions of Metal Chlorides with Sodium Arsenide. 77 17. Products of Reactions of Metal Chlorides with Sodium Antimonide. 80 18. Products of Reactions of Titanium and Vanadium Tetrachlorides with Sodium Pnictides. 82 19. Product Composition Predicted from Ratio of Metal: Silicon in Reagent Mixture (of MCln with Mg:Si) and of Observed Silicide Product. 90 2 0 . Products of Reactions of Metal Chlorides with Magnesium Silicide. 91 Products of Reactions of Metal Chlorides with Lithium Oxide. 103/4 Figures. Page 1. Synthesis of P - Sic Fibres. 20 2. Typical Exothermic Peak in a Thermal Explosion Mode of Combustion. 22 3. Scanning Electron Micrograph of the Crude and Washed Products of the Reaction Between TiCb and LigN. 32 4. Energy Dispersive X-ray Analysis of the Crude and Washed Products of the Reaction Between TiCb and LisN. 33 5. Powder X-ray Diffraction Pattern of Mo/ Mo%N Produced from M 0 CI3 with LigN. 38 6 . Thermocouple Trace from the Reaction Between TiCb and LigN. 38 7. X-ray Diffraction Pattern of Purified DyN Produced from DyClg and LisN. 40 8 . X-ray Diffraction Patterns of Purified Products of Reactions of: TiClg + LisN, TiCls + VCI3 + Li3N, VCI3 + U 3N and TiCU + VCU + %Li3N. 41 9. Photographs of a Reaction of TiCU + VCU + %Li3N. 43 10. Graph of Lattice Parameter a (Â) vs. x for TUVi.xN Produced from the Tetrachlorides. 43 11. Broadening of the 200 reflection of the TiN powder pattern with dilution. 45 12. Graph of Crystallite Size of TiN Product vs. Amount of LiCl Diluent Added to Synthesis of TiN. 46 13. X-ray Photoelectron Spectra in the Tunsten 4f Region of the Purified Products of Reaction Between WCU and Li 3N (a) Undiluted at a Scale of lOOmg Li3N, (b) Diluted with 300mg LiCl, (c) Diluted with 600mg ofLiCl. 46/7 14. Examples of Solid State Metathesis Processes: Ionicvs. Elemental Mechanism. 48 15. Scanning Electron Micrographs of Crude and Washed TiN Produced from TiCU and NaN3. 56 16. X-ray Diffraction Patterns of TiN Produced From TiCU with LUN or NaN3. 57 17. Products of Reactions of Rare Earth Chlorides with Magnesium and Calcium Nitride. 58 18. X-ray Dififraction Pattern of the Products of GdCls with CagNi After Two Hours at 500°C.
Recommended publications
  • Solutions to Exercises
    Solutions to Exercises Note: There may be more than one correct path to a correct answer. Chapter 1. Problem Solving 1. If your answer doesn’tagree with the published answer,possibilities include a) your answer may be incorrect, b) the published answer may be incorrect, c) both may be incorrect, d) both may be correct (i.e. there may be more than one correct answer), e) typographical error (answer out of place). 2. Terminology: chemistry is a noun (object), but could refer to an object of study or prac- tice, etc. As an object of study,chemistry could refer to what is expected to be known by a novice, all that is known, all that may be known, etc; as a practice, chemistry could refer to practical applications, theoretical principles, processes where substances change called chemical reactions, etc. The word reasonable might connote logic, understand- ing, ethical practice, demand, etc. One might logically conclude that the subject of chemistry should be understandable, or that the field of chemistry should be non-productive (if it is reasonable to assume that chemistry is harmful to the environment, say), etc. This example is not meant to be totally trivial. Communication involves common under- standing of terminology,construction (syntax) and meaning (semantics). Forexample, the word "add" may mean different things depending on the context; e.g. calculators (add twointegers), travelagents (add the mileage, add a flight, total the cost). Clear definitions and logical thinking are essential to science. 3. There seems to be an implicit assumption that Alice wants to go somewhere. If she doesn’tspecify anydestination, the Cat may give anarbitrary route.
    [Show full text]
  • Amount of Substance
    www.CHEMSHEETS.co.uk AMOUNT OF SUBSTANCE © www.CHEMSHEETS.co.uk 28-July-2020 Chemsheets AS 1027 1 1 - FORMULAE If you are serious about doing A level Chemistry, you MUST be able to write a formula without a second thought. It is the single most essential skill for an A level chemist. You have to know and be able to use the information on this page – you should not be looking it up. There is no data sheet with ion charges at A level. If you can’t write a formula in an instant, DROP CHEMISTRY NOW and choose something else. Elements Monatomic Simple molecular Ionic Metallic Giant covalent helium hydrogen There are no ionic The formula is just the The formula is just the elements!! symbol, e.g. symbol neon nitrogen magnesium diamond argon oxygen iron graphite krypton fluorine sodium silicon xenon chlorine nickel radon bromine iodine phosphorus sulfur Compounds Monatomic Simple molecular Ionic Metallic Giant covalent There are no monatomic Some common These have to be There are no metallic silicon dioxide compounds!! molecular compounds: worked out using ion compounds!! charges – you have to carbon dioxide know these at AS/A carbon monoxide level! nitrogen monoxide LEARN them ASAP. nitrogen dioxide sulfur dioxide Note these acids: sulfur trioxide hydrochloric acid ammonia sulfuric acid methane nitric acid hydrogen sulfide phosphoric acid Positive ions Negative ions Group 1 ions: Group 3 ions: Group 7 ions: Other common ions lithium aluminium fluoride nitrate sodium chloride sulfate Other common ions potassium bromide carbonate silver iodide hydrogencarbonate Group 2 ions: zinc hydroxide magnesium Group 6 ions: ammonium hydride calcium oxide hydrogen phosphate barium sulfide © www.CHEMSHEETS.co.uk 28-July-2020 Chemsheets AS 1027 2 TASK 1 – WRITING FORMULAS OF IONIC COMPOUNDS 1) silver bromide ………………………….
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • Chapter 2, Section
    Naming Simple Compounds Ionic Compounds Ionic compounds • consist of positive and negative ions. • have attractions called ionic bonds between positively and negatively charged ions. • have high melting and boiling points. • are solid at room temperature. Copyright © Houghton Mifflin Company. All rights reserved. 2–2 Salt is An Ionic Compound Sodium chloride or “table salt” is an example of an ionic compound. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–3 Naming Ionic Compounds with Two Elements To name a compound that contains two elements, • identify the cation and anion. • name the cation first followed by the name of the anion. Copyright © Houghton Mifflin Company. All rights reserved. 2–4 Binary Ionic Compounds Type (I) An ionic formula • consists of positively and negatively charged ions. • is neutral. • has charge balance. total positive charge = total negative charge The symbol of the metal is written first followed by the symbol of the nonmetal. Copyright © Houghton Mifflin Company. All rights reserved. 2–5 Charge Balance In MgCl2 In MgCl2, • a Mg atom loses two valence electrons. • two Cl atoms each gain one electron. • subscripts indicate the number of ions needed to give charge balance. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–6 Charge Balance in Na2S In Na2S. • two Na atoms lose one valence electron each. • one S atom gains two electrons. • subscripts show the number of ions needed to give Copyright © 2005 by Pearson Education, Inc. charge balance. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics Permalink https://escholarship.org/uc/item/9068g8b2 Author Hick, Sandra Marie Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/9068g8b2#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Sandra Marie Hick 2013 ABSTRACT OF THE DISSERTATION Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics by Sandra Marie Hick Doctor of Philosophy in Chemistry University of California, Los Angeles, 2013 Professor Richard B. Kaner, Chair New routes to solid states materials are needed for discovery and the realization of improved reactions. By utilizing reactive approaches such as solid-state metathesis, pyrolysis, and nitride fluxes new routes to hard materials, phosphor hosts, and fast ion conductors were developed. The fast ion conductor lithium silicon nitride, Li2SiN2, was produced in a metathesis reaction between silicon chloride, SiCl4 and lithium nitride, Li3N, initiated in a conventional microwave oven. The Li2SiN2 produced had a conductivity of 2.70 x 10-3 S/cm at 500 °C. Colorless millimeter-sized crystals of Ca16Si17N34 were synthesized at high temperatures from a flux generated in situ from reaction intermediates. The ii compound was found to crystallize in the cubic space group F-43m (a = 14.8882 Å).
    [Show full text]
  • S1303, Sodium Hydroxide, Pellets, FCC
    Scientific Documentation S1303, Sodium Hydroxide, Pellets, FCC Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.06 29.September.2021 S1303, Sodium Hydroxide, Pellets, FCC Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement General Label Information – Sample Label General Lot Numbering System Guidance Kosher Certificate Halal Certificate Specification for Sodium Hydroxide, Pellets, FCC (S1303) Item Number S1303 Item Sodium Hydroxide, Pellets, FCC CAS Number 1310-73-2 Molecular Formula NaOH Molecular Weight 40.00 MDL Number Synonyms Caustic Soda ; Soda Lye Test Specification Min Max ASSAY (TOTAL ALKALI as NaOH) 95.0 100.5 % ARSENIC (As) 3 mg/kg CARBONATE (as Na2CO3) 3.0 % INSOLUBLE SUBSTANCES & ORGANIC MATTER TO PASS TEST LEAD (Pb) 2 mg/kg MERCURY 0.1 mg/kg IDENTIFICATION TO PASS TEST CERTIFIED KOSHER CERTIFIED HALAL APPEARANCE EXPIRATION DATE DATE OF MANUFACTURE MONOGRAPH EDITION Certificate Of Analysis Item Number S1303 Lot Number 1JG0041 Item Sodium Hydroxide,
    [Show full text]
  • The Energy Landscape Concept and Its Implications for Synthesis Planning
    Pure Appl. Chem. 2014; 86(6): 883–898 Conference paper Martin Jansen* The energy landscape concept and its implications for synthesis planning Abstract: Synthesis of novel solids, in a chemical sense, is one of the spearheads of innovation in materials research. However, such an undertaking is substantially impaired by lack of control and predictability. We present a concept that points the way towards rational planning of syntheses in solid state and materials chemistry. The foundation of our approach is the representation of the whole material world, i.e., the known and not-yet-known chemical compounds, on an energy landscape, which implies information about the free energies of these configurations. From this it follows at once that all chemical compounds capable of existence (both thermodynamically stable and metastable ones) are already present in virtuo in this landscape. For the first step of synthesis planning, i.e., the identification of candidates that are capable of existence, we computa- tionally search the respective potential energy landscapes for (meta)stable structure candidates. Recently we have extended our techniques to finite temperatures and pressures and calculated phase diagrams, including metastable manifestations of matter, without resorting to any experimental pre-information. The conception developed is physically consistent, and its feasibility has been proven. Applying appropriate experimental tools has enabled us to realize, e.g., elusive Na3N, including almost all of its predicted polymorphs, many years after the predictions were published. Keywords: calculation of phase diagrams; global searches; inorganic materials synthesis; IUPAC Congress-44; local ergodicity; solid state chemistry; structure prediction; synthesis from atoms. DOI 10.1515/pac-2014-0212 Introduction The lines of action called “analysis” and “synthesis” continue to constitute the foundation of chemistry, providing it with genuine and distinct characteristics in a time of increasing overlap among the various dis- ciplines of natural sciences.
    [Show full text]
  • Operation Permit Application
    Un; iy^\ tea 0 9 o Operation Permit Application Located at: 2002 North Orient Road Tampa, Florida 33619 (813) 623-5302 o Training Program TRAINING PROGRAM for Universal Waste & Transit Orient Road Tampa, Florida m ^^^^ HAZARDOUS WAb 1 P.ER^AlTTlNG TRAINING PROGRAM MASTER INDEX CHAPTER 1: Introduction Tab A CHAPTER 2: General Safety Manual Tab B CHAPTER 3: Protective Clothing Guide Tab C CHAPTER 4: Respiratory Training Program Tab D APPENDIX 1: Respiratory Training Program II Tab E CHAPTER 5: Basic Emergency Training Guide Tab F CHAPTER 6: Facility Operations Manual Tab G CHAPTER 7: Land Ban Certificates Tab H CHAPTER 8: Employee Certification Statement Tab. I CHAPTER ONE INTRODUCTION prepared by Universal Waste & Transit Orient Road Tampa Florida Introducti on STORAGE/TREATMENT PERSONNEL TRAINING PROGRAM All personnel involved in any handling, transportation, storage or treatment of hazardous wastes are required to start the enclosed training program within one-week after the initiation of employment at Universal Waste & Transit. This training program includes the following: Safety Equipment Personnel Protective Equipment First Aid & CPR Waste Handling Procedures Release Prevention & Response Decontamination Procedures Facility Operations Facility Maintenance Transportation Requirements Recordkeeping We highly recommend that all personnel involved in the handling, transportation, storage or treatment of hazardous wastes actively pursue additional technical courses at either the University of South Florida, or Tampa Junior College. Recommended courses would include general chemistry; analytical chemistry; environmental chemistry; toxicology; and additional safety and health related topics. Universal Waste & Transit will pay all registration, tuition and book fees for any courses which are job related. The only requirement is the successful completion of that course.
    [Show full text]
  • Approaches to a Total (Or Grouped) VOC Guideline
    AAPPPPRROOAACCHHEESS TTOO AA TTOOTTAALL ((OORR GGRROOUUPPEEDD)) VVOOCC GGUUIIDDEELLIINNEE FFIINNAALL RREEPPOORRTT Approaches to a Total (or Grouped) VOC Guideline Final Report Prepared by: Jamie T. Ayers #102 17315-69th Ave. Edmonton, AB T5T 3S6 for Air and Water Branch Science and Standards Division Alberta Environment 9820 – 106 Street Edmonton, Alberta T5K 2J6 April 2002 Pub. No: T/692 ISBN No. 0-7785-2500-7 (Printed Edition) ISBN No. 0-7785-2501-5 (On-line Edition) Web Site: www.gov.ab.ca/env/protenf/standards/ Any comments, questions, or suggestions regarding the content of this document may be directed to: Science and Standards Branch Alberta Environment 4th Floor, Oxbridge Place 9820 – 106th Street Edmonton, Alberta T5K 2J6 Fax: (780) 422-4192 Additional copies of this document may be obtained by contacting: Information Centre Alberta Environment Main Floor, Great West Life Building 9920 – 108th Street Edmonton, Alberta T5K 2M4 Phone: (780) 944-0313 Fax: (780) 427-4407 Email: [email protected] FOREWORD Alberta Environment maintains Ambient Air Quality Guidelines to support air quality management in Alberta. Alberta Environment currently has ambient guidelines for thirty-one substances and five related parameters. These guidelines are periodically updated and new guidelines are developed as required. Fact Sheets on Ambient Air Quality Guidelines were updated in September 1997 and February 2000. This document is prepared to support the development of a total (or grouped) volatile organic compound guideline. Long Fu, Ph.D. Project Manager Science and Standards Approaches to a Total (or Grouped) VOC Guideline i ACKNOWLEDGEMENTS Many individuals have contributed toward the completion of this report in one form or another.
    [Show full text]
  • Gases in Metals: Iii. the Determination of Nitrogen in Metals by Fusion in Vacuum
    S563 GASES IN METALS: III. THE DETERMINATION OF NITROGEN IN METALS BY FUSION IN VACUUM By Louis Jordan and James R. Eckman ABSTRACT A method has been developed for the determination of nitrogen in the gases evolved from metals fused in vacuum. As in a previously described method for the determination of oxygen and hydrogen by vacuum fusion, the metal sample is melted in a graphite crucible in a high-frequency vacuum furnace. The nitrogen, together with the other gases evolved except the noble gases, is absorbed in calcium vapor. The calcium nitride thus formed is dissolved in dilute hydrochloric acid with the formation of an ammonium salt, and the resulting ammonia is determined by distillation into a standard acid. The efficiency of the determination of nitrogen by absorption in calcium vapor was determined by tests with known gas mixtures. The complete vacuum-fusion procedure was applied to the analysis of several synthetic nitrides (silicon, aluminum, titanium, zirconium, chromium, vanadium) and a few irons and steels. The results ob- tained were compared with the nitrogen values given by the usual acid-solution method for nitrogen in metals. The fusion method has a precision equal to that of .the solution method and gives higher values for nitrogen than the solution method in the analysis of nitrides of silicon, titanium, and vanadium and in certain iron and steel samples. The fusion method should determine also any "uncombined" nitrogen present in a metal. CONTENTS Page I. Introduction 468 II. Review of methods for determining nitrogen in gas mixtures 470 III. Calcium as an absorbent for nitrogen 471 IV.
    [Show full text]
  • Material Safety Data Sheet
    MATERIAL SAFETY DATA SHEET INDY PURPINATOR Heavy Duty All Purpose Cleaner and Degreaser 1. PRODUCT AND COMPANY IDENTIFICATION Product Name INDY Purpinator Description Heavy Duty All Purpose Cleaner and Degreaser Validation Date November 2015 Manufacturer GUD Holdings (Pty) Ltd via Indy Oil SA 3 The Avenue East Isipingo KwaZulu-Natal South Africa 4110 Emergency Contact Number + 27 31 910 3111 + 27 60 572 8088 2. COMPOSITION Component EINECS CAS registry % content Classification Number number Sodium 215-185-5 1310-73-2 0.5 – 2.0 Xi, R36/38 hydroxide 3. HAZARDS INDENTIFICATION Human Health Hazards Causes eye cause irritation characterized by a burning sensation. Inhalation of vapour or mist may cause respiratory tract irritation and central nervous system effects (headaches, dizziness). The product is harmful if swallowed. Aspiration of the material into the lungs may cause chemical pneumonitis. Ingestion may lead to stomach distress, nausea and vomiting. Repeated DURBAN HEAD OFFICE Pietermaritzburg Tel: +27 31 910 3111 Tel: + 27 33 392 9300 Fax: +27 31 902 4889 Fax: +27 33 390 1844 MATERIAL SAFETY DATA SHEET – PAGE 2 contact or exposure to the skin may lead to cracking / drying due to the defatting action of the material. Skin discolouration may occur as a result of prolonged exposure. Safety Hazards The product is not classified as flammable but is highly reactive with certain substances. Care should be exercised upon storage and handling. Avoid contact with high temperatures and ignition sources. Environmental Hazards The product may lead to environmental contamination. 4. FIRST AID MEASURES General Information If the product splashes into the eye it may cause irritation and conjunctivitis.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]